RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800730
Advancing Clinical Information Systems: Harnessing Telemedicine, Data Science, and AI for Enhanced and More Precise Healthcare Delivery

Summary
Objective: In this synopsis, the editors of the Clinical Information Systems (CIS) section of the IMIA Yearbook of Medical Informatics overview recent research and propose a selection of best papers published in 2023 in the CIS field.
Methods: The CIS section editors utilize a systematic approach to collect relevant articles and determine the best papers for the section. Last year, they refined the query to include the topic of telemedicine. Through a multi-stage systematic selection process, the editors reduced the initial pool to 15 candidate papers. Each of these papers underwent at least six independent reviews, culminating in a selection meeting with the IMIA Yearbook editorial board, where the three best papers for the CIS section were chosen.
Results: The query was carried out in January 2024 retrieving 4,784 unique papers from PubMed and Web of Science, spanning 1,401 journals. The top journals included “Telemedicine Journal and e-Health” and “Journal of Medical Internet Research”. Publications predominantly originated from the United States and United Kingdom. Significant contributions included advancements in predictive analytics, such as scalable models for diagnosis prediction and patient readmission, integration of digital twin technology, and improvements in data interoperability and security. The analysis underscores the continued focus on leveraging electronic health record data and the importance of patient-centered technologies in CIS.
Conclusions: These findings highlight the ongoing evolution and potential of CIS technologies in enhancing patient care, emphasizing the importance of integrating innovative solutions and patient-centered approaches in the field.
Keywords
Medical informatics - International Medical Informatics Association - Yearbook - Clinical Information Systems - Artificial Intelligence - Data Science - TelemedicinePublikationsverlauf
Artikel online veröffentlicht:
08. April 2025
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hackl WO, Neururer SB, Pfeifer B. Transforming Clinical Information Systems: Empowering Healthcare through Telemedicine, Data Science, and Artificial Intelligence Applications. Yearb Med Inform. 32 (2023) 127–137. doi:10.1055/S-0043-1768756.
- 2 Hackl WO, Hoerbst A. On the Way to Close the Loop in Information Logistics: Data from the Patient - Value for the Patient. Yearb Med Inform. 27 (2018) 91–97. doi:10.1055/s-0038-1667076.
- 3 Hackl WO, Hoerbst A. Managing Complexity. From Documentation to Knowledge Integration and Informed Decision Findings from the Clinical Information Systems Perspective for 2018. Yearb Med Inform. 28 (2019) 95–100. doi:10.1055/s-0039-1677919.
- 4 Hackl WO, Hoerbst A. Trends in Clinical Information Systems Research in 2019. Yearb Med Inform. 29 (2020) 121–128. doi:10.1055/s-0040-1702018.
- 5 Hackl WO, Hoerbst A. Clinical Information Systems Research in the Pandemic Year 2020. Yearb Med Inform. 30 (2021) 134–140. doi:10.1055/s-0041-1726516.
- 6 Hackl WO, Hoerbst A. “All Quiet on the Western Front” - Clinical Information Systems Research in the Year 2021. Yearb Med Inform. 31 (2022) 146–150. doi:10.1055/S-0042-1742532/BIB.
- 7 Hackl WO, Neururer SB, Pfeifer B. Unveiling the Surge: A Comprehensive Analysis of the Stimulating Impact of the Covid-19 Pandemic on Telemedicine and Its Academic Landscape. Stud Health Technol Inform. 313 (2024) 209–214. doi:10.3233/SHTI240039.
- 8 van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84 (2010) 523–538. doi:10.1007/s11192-009-0146-3.
- 9 Waltman L, van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. J Informetr. 4 (2010) 629–635. doi:10.1016/j.joi.2010.07.002.
- 10 Mukherjee P, Humbert-Droz M, Chen JH, Gevaert O. SCOPE: predicting future diagnoses in office visits using electronic health records. Sci Rep. 13 (2023). doi:10.1038/s41598-023-38257-9.
- 11 Khodadadi A, Ghanbari Bousejin N, Molaei S, Kumar Chauhan V, Zhu T, Clifton DA. Improving Diagnostics with Deep Forest Applied to Electronic Health Records. Sensors. 23 (2023). doi:10.3390/s23146571.
- 12 Basnet S, Parasteh S, Manashty A, Sasyniuk B. RIMD: A novel method for clinical prediction. Artif Intell Med. 140 (2023). doi:10.1016/j.artmed.2023.102526.
- 13 Boussina A, Shashikumar S, Amrollahi F, Pour H, Hogarth M, Nemati S. Development & Deployment of a Real-time Healthcare Predictive Analytics Platform. Annu Int Conf IEEE Eng Med Biol Soc. 2023 (2023) 1–4. doi:10.1109/EMBC40787.2023.10340351.
- 14 Li Y, Mamouei M, Salimi-Khorshidi G, Rao S, Hassaine A, Canoy D, et al., Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records. IEEE J Biomed Health Inform. 27 (2023) 1106–1117. doi:10.1109/JBHI.2022.3224727.
- 15 Theodorou B, Xiao C, Sun J. Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model. Nat Commun. 14 (2023). doi:10.1038/s41467-023-41093-0.
- 16 Vallée A. Digital twin for healthcare systems. Front Digit Health. 5 (2023). doi:10.3389/fdgth.2023.1253050.
- 17 Sinaci AA, Gencturk M, Teoman HA, Erturkmen GBL, Alvarez-Romero C, Martinez-Garcia A, et al., A Data Transformation Methodology to Create Findable, Accessible, Interoperable, and Reusable Health Data: Software Design, Development, and Evaluation Study. J Med Internet Res. 25 (2023). doi:10.2196/42822.
- 18 Raab R, Küderle A, Zakreuskaya A, Stern AD, Klucken J, Kaissis G, et al., Federated electronic health records for the European Health Data Space. Lancet Digit Health. 5 (2023) e840–e847. doi:10.1016/S2589-7500(23)00156-5.
- 19 Pedrera-Jiménez M, García-Barrio N, Frid S, Moner D, Boscá-Tomás D, Lozano-Rubí R, et al., Can OpenEHR, ISO 13606, and HL7 FHIR Work Together? An Agnostic Approach for the Selection and Application of Electronic Health Record Standards to the Next-Generation Health Data Spaces. J Med Internet Res. 25 (2023). doi:10.2196/48702.
- 20 Meredith J, Whitehead N, Dacey M. Aligning Semantic Interoperability Frameworks with the FOXS Stack for FAIR Health Data. Methods Inf Med. 62 (2022) E39–E46. doi:10.1055/a-1993-8036.
- 21 Pathak N, Mukherjee A, Misra S. SemBox: Semantic Interoperability in a Box for Wearable e-Health Devices. IEEE J Biomed Health Inform. 27 (2023) 2306–2313. doi:10.1109/JBHI.2022.3168071.
- 22 Lanzola G, Polce F, Parimbelli E, Gabetta M, Cornet R, de Groot R, et al. The Case Manager: An Agent Controlling the Activation of Knowledge Sources in a FHIR-Based Distributed Reasoning Environment. Appl Clin Inform. 14 (2022) 725–734. doi:10.1055/a-2113-4443.
- 23 Kuppanda PM, Jenkins J. Evaluation of Experiences and Attitudes of Patients Towards Patient Portal-Enabled Access to Their Health Information or Medical Records: A Qualitative Grounded Theory Study. Qual Health Res. 33 (2023) 1080–1090. doi: 10.1177/10497323231192379.
- 24 He Y, Zamani E, Yevseyeva I, Luo C. Artificial Intelligence–Based Ethical Hacking for Health Information Systems: Simulation Study. J Med Internet Res. 25 (2023). doi:10.2196/41748.
- 25 Ryu AJ, Ayanian S, Qian R, Core MA, Heaton HA, Lamb MW, et al. A Clinician's Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment. Mayo Clin Proc. 98 (2023) 445–450. doi:10.1016/J.MAYOCP.2022.11.019.
- 26 Carrasco-Ribelles LA, Llanes-Jurado J, Gallego-Moll C, Cabrera-Bean M, Monteagudo-Zaragoza M, Violán C, et al. Prediction models using artificial intelligence and longitudinal data from electronic health records: a systematic methodological review. J Am Med Inform Assoc. 30 (2023) 2072–2082. doi:10.1093/JAMIA/OCAD168.
- 27 Peek N, Capurro D, Rozova V, van der Veer SN. Bridging the Gap: Challenges and Strategies for the Implementation of Artificial Intelligence-based Clinical Decision Support Systems in Clinical Practice. Yearb Med Inform. 2024; 103-114. doi: 10.1055/s-0044-18007279