RSS-Feed abonnieren

DOI: 10.1055/s-0044-1795095
Precision in Neuronavigation Systems: A Systematic Review and Meta-analysis
Precisão em sistemas de neuronavegação: Uma revisão sistemática e meta-análise Funding There is no funding source for this article.
Abstract
Introduction To evaluate the accuracy of different neuronavigation systems and establish factors that influence their accuracy and their indications for use.
Methods This is a systematic review of the literature with meta-analysis based on the guiding question of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA): What is the accuracy of neuronavigation systems and the factors that influence it? For that, a search was performed in PubMed, LILACS, SciELO, Embase, Web of Science, and SCOPUS databases using descriptors combined with two Boolean operators. The articles found were submitted to eligibility criteria, and the reading was partial and complete. A total of 51 studies were selected, and 11 were included in the meta-analysis.
Results In total, 5,316 procedures were evaluated using neuronavigation systems and different types of procedures performed on the skull and spine. After meta-analysis, it was possible to establish the accuracy of the optical (N = 297) and AR (N = 195), with SBT of 2.34 mm and 2.09 mm, respectively. However, studies were evaluated regarding the influence of different recording methods, the use of associated technologies, and their indications for use.
Conclusions The accuracy of the systems was established through the TRE of 2.34 mm for the optical and 2.09 mm for the augmented reality, while it was not possible to establish the electromagnetic one. Thus, the ARN is the system with the best accuracy value, in addition to presenting advantages during the surgical period when compared with the others.
Resumo
Introdução Avaliar a precisão de diferentes sistemas de neuronavegação e estabelecer fatores que influenciam sua precisão e suas indicações de uso.
Métodos Trata-se de uma revisão sistemática da literatura com meta-análise baseada na questão norteadora do Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA): Qual a precisão dos sistemas de neuronavegação e os fatores que a influenciam? Para tanto foi realizada uma busca nas bases de dados PubMed, LILACS, SciELO, Embase, Web of Science e SCOPUS utilizando descritores combinados com dois operadores booleanos. Os artigos encontrados foram submetidos aos critérios de elegibilidade e a leitura foi parcial e completa. Foram selecionados 51 estudos e 11 foram incluídos na meta-análise.
Resultados No total foram avaliados 5.316 procedimentos utilizando sistemas de neuronavegação e diferentes tipos de procedimentos realizados no crânio e na coluna vertebral. Após a meta-análise foi possível estabelecer a precisão da óptica (N = 297) e da RA (N = 195) com SBT de 2 34 mm e 2.09 mm, respectivamente. No entanto foram avaliados estudos quanto à influência de diferentes métodos de registro ao uso de tecnologias associadas e suas indicações de uso.
Conclusões A precisão dos sistemas foi estabelecida por meio do TRE de 2.34 mm para a óptica e 2.09 mm para a realidade aumentada enquanto não foi possível estabelecer o eletromagnético. Dessa forma a ARN é o sistema com melhor valor de precisão além de apresentar vantagens durante o período cirúrgico quando comparado aos demais.
Keywords
neuronavigation - accuracy - reliability - neurosurgery - neurosurgical procedures - image-guided surgeryPalavras-chave
neuronavegação - precisão - confiabilidade - neurocirurgia - procedimentos neurocirúrgicos - cirurgia guiada por imagemPublikationsverlauf
Eingereicht: 13. Dezember 2023
Angenommen: 18. Oktober 2024
Artikel online veröffentlicht:
11. Dezember 2024
© 2024. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Figueras-Benitez G, Urbano L, Acero A, Huerta M, Castro M. Surgical Navigation Systems: A Technological Overview . 2014 https://doi.org/10.13140/RG.2.1.2449.1043
- 2 Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on systematic reviews. Lancet 2001; 357 (9270) 1728
- 3 Page MJ, McKenzie JE, Bossuyt PM. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372 (71) n71
- 4 Microsoft Corporation. Microsoft Office Excel. Microsoft, 2018
- 5 Sterne JAC, Savović J, Page MJ. et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898
- 6 Wells GA, Shea B, O'Connell D. et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital,; 2021
- 7 Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid-Based Healthc 2015; 13 (03) 147-153
- 8 Whiting PF, Rutjes AW, Westwood ME. et al; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155 (08) 529-536
- 9 Asano K, Katayama K, Kakuta K, Oyama K, Ohkuma H. Assessment of the Accuracy and Errors of Head-Up Display by an Optical Neuronavigation System in Brain Tumor Surgery. Oper Neurosurg (Hagerstown) 2017; 13 (01) 23-35
- 10 Auloge P, Cazzato RL, Ramamurthy N. et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J 2020; 29 (07) 1580-1589
- 11 Bilhar RPO, de Lima DA, Leite JAD, Porto MA. Accuracy of pedicle screw insertion: A comparison between fluoroscopic guidance and navigation techniques. Acta Ortop Bras 2018; 26 (06) 397-400
- 12 Carl B, Bopp M, Saß B. et al. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography. Neurosurg Focus 2019; 47 (06) E11
- 13 Caversaccio M, Langlotz F, Nolte LP, Häusler R. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience. Acta Otolaryngol 2007; 127 (04) 403-407
- 14 Carvi Y Nievas MN, Höllerhage HG. Reliability of neuronavigation-assisted trans-sphenoidal tumor resections. Neurol Res 2007; 29 (06) 557-562 Doi: 10.1179/016164107 × 164184
- 15 Castilla JM, Martín V, Fernández-Arconada O, Delgado P, Rodríguez-Salazar A. [First steps in neuronavigation]. Neurocirugia (Astur) 2003; 14 (05) 398-408
- 16 Condino S, Montemurro N, Cattari N. et al. Evaluation of a Wearable AR Platform for Guiding Complex Craniotomies in Neurosurgery. Ann Biomed Eng 2021; 49 (09) 2590-2605
- 17 Deng W, Li F, Wang M, Song Z. Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotact Funct Neurosurg 2014; 92 (01) 17-24
- 18 Dixon BJ, Daly MJ, Chan H, Vescan AD, Witterick IJ, Irish JC. Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg Endosc 2013; 27 (02) 454-461
- 19 Eboli P, Shafa B, Mayberg M. Intraoperative computed tomography registration and electromagnetic neuronavigation for transsphenoidal pituitary surgery: accuracy and time effectiveness. J Neurosurg 2011; 114 (02) 329-335
- 20 Elmi-Terander A, Nachabe R, Skulason H. et al. Feasibility and Accuracy of Thoracolumbar Minimally Invasive Pedicle Screw Placement With Augmented Reality Navigation Technology. Spine 2018; 43 (14) 1018-1023
- 21 Elmi-Terander A, Burström G, Nachabe R. et al. Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging: A First In-Human Prospective Cohort Study. Spine 2019; 44 (07) 517-525
- 22 Enchev Y, Tzekov C, Ferdinandov D, Cekov A, Spiriev T. Neuronavigation in cranioorbital neurosurgery - do we really need it?. Turk Neurosurg 2011; 21 (02) 119-126
- 23 Fan Y, Yao X, Xu X. A robust automated surface-matching registration method for neuronavigation. Med Phys 2020; 47 (07) 2755-2767
- 24 Finger T, Schaumann A, Schulz M, Thomale UW. Augmented reality in intraventricular neuroendoscopy. Acta Neurochir (Wien) 2017; 159 (06) 1033-1041
- 25 Grayeli AB, Esquia-Medina G, Nguyen Y. et al. Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol 2009; 129 (04) 405-410
- 26 Gerard IJ, Kersten-Oertel M, Drouin S. et al. Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases. J Med Imaging (Bellingham) 2018; 5 (02) 021210
- 27 Guedes VP, Manffra EF, Aguiar LR. Image-guided surgery in the spine: Neuronavigation vs. fluoroscopy. Coluna/Columna 2015; 14 (03) 181-185
- 28 Hejazi N. Frameless image-guided neuronavigation in orbital surgery: practical applications. Neurosurg Rev 2006; 29 (02) 118-122
- 29 Hermann EJ, Petrakakis I, Polemikos M. et al. Electromagnetic navigation-guided surgery in the semi-sitting position for posterior fossa tumours: a safety and feasibility study. Acta Neurochir (Wien) 2015; 157 (07) 1229-1237
- 30 Hermann EJ, Esmaeilzadeh M, Ertl P, Polemikos M, Raab P, Krauss JK. Endoscopic intracranial surgery enhanced by electromagnetic-guided neuronavigation in children. Childs Nerv Syst 2015; 31 (08) 1327-1333
- 31 Inoue D, Cho B, Mori M. et al. Preliminary study on the clinical application of augmented reality neuronavigation. J Neurol Surg A Cent Eur Neurosurg 2013; 74 (02) 71-76
- 32 Jung TY, Jung S, Kim IY. et al. Application of neuronavigation system to brain tumor surgery with clinical experience of 420 cases. Minim Invasive Neurosurg 2006; 49 (04) 210-215
- 33 Mascitelli JR, Schlachter L, Chartrain AG. et al. Navigation-Linked Heads-Up Display in Intracranial Surgery: Early Experience. Oper Neurosurg (Hagerstown) 2018; 15 (02) 184-193
- 34 Mascott CR, Sol JC, Bousquet P, Lagarrigue J, Lazorthes Y, Lauwers-Cances V. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery 2006; 59 (1, Suppl 1) ONS146-ONS156 , discussion ONS146–ONS156
- 35 Maruyama K, Watanabe E, Kin T. et al. Smart Glasses for Neurosurgical Navigation by Augmented Reality. Oper Neurosurg (Hagerstown) 2018; 15 (05) 551-556
- 36 McLaughlin N, Carrau RL, Kassam AB, Kelly DF. Neuronavigation in endonasal pituitary and skull base surgery using an autoregistration mask without head fixation: an assessment of accuracy and practicality. J Neurol Surg A Cent Eur Neurosurg 2012; 73 (06) 351-357
- 37 Mert A, Gan LS, Knosp E, Sutherland GR, Wolfsberger S. Advanced cranial navigation. Neurosurgery 2013; 72 (Suppl. 01) 43-53
- 38 Muacevic A, Uhl E, Steiger HJ, Reulen HJ. Accuracy and clinical applicability of a passive marker based frameless neuronavigation system. J Clin Neurosci 2000; 7 (05) 414-418
- 39 Nimsky C, Grummich P, Sorensen AG, Fahlbusch R, Ganslandt O. Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir 2005; 66 (03) 133-141
- 40 Novák V, Hrabálek L, Valošek J. et al. The use of an O-arm in endonasal endoscopic operations of the skull base. BMC Surg 2021; 21 (01) 58
- 41 Paraskevopoulos D, Unterberg A, Metzner R, Dreyhaupt J, Eggers G, Wirtz CR. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev 2010; 34 (02) 217-228
- 42 Pinggera D, Kerschbaumer J, Bauer M. et al. Accuracy Validation of Neuronavigation Comparing Headholder-Based System with Head-Mounted Array-A Cadaveric Study. World Neurosurg 2018; 120: e313-e317
- 43 Pojskić M, Bopp MHA, Saβ B, Carl B, Nimsky C. Microscope-Based Augmented Reality with Intraoperative Computed Tomography-Based Navigation for Resection of Skull Base Meningiomas in Consecutive Series of 39 Patients. Cancers (Basel) 2022; 14 (09) 2302
- 44 Pojskić M, Bopp M, Saß B, Kirschbaum A, Nimsky C, Carl B. Intraoperative Computed Tomography-Based Navigation with Augmented Reality for Lateral Approaches to the Spine. Brain Sci 2021; 11 (05) 646
- 45 Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 2002; 50 (04) 797-801 , discussion 802–803
- 46 Reinges MH, Nguyen HH, Krings T, Hütter BO, Rohde V, Gilsbach JM. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 2004; 146 (04) 369-377 , discussion 377
- 47 Roethe AL, Rösler J, Misch M, Vajkoczy P, Picht T. Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Acta Neurochir (Wien) 2022; 164 (01) 3-14
- 48 Salma A, Makiese O, Sammet S, Ammirati M. Effect of registration mode on neuronavigation precision: an exploration of the role of random error. Comput Aided Surg 2012; 17 (04) 172-178
- 49 Scheufler KM, Franke J, Eckardt A, Dohmen H. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, part I: cervicothoracic spine. Neurosurgery 2011; 69 (04) 782-795 , discussion 795
- 50 Serej ND, Ahmadian A, Mohagheghi S, Sadrehosseini SM. A projected landmark method for reduction of registration error in image-guided surgery systems. Int J Comput Assist Radiol Surg 2015; 10 (05) 541-554
- 51 Shamir RR, Joskowicz L, Spektor S, Shoshan Y. Target and trajectory clinical application accuracy in neuronavigation. Neurosurgery 2011; 68 (01) , Suppl Operative ) 95-101 , discussion 101–102
- 52 Suess O, Kombos T, Kurth R. et al. Intracranial image-guided neurosurgery: experience with a new electromagnetic navigation system. Acta Neurochir (Wien) 2001; 143 (09) 927-934
- 53 Suess O, Picht T, Kuehn B, Mularski S, Brock M, Kombos T. Neuronavigation without rigid pin fixation of the head in left frontotemporal tumor surgery with intraoperative speech mapping. Neurosurgery 2007; 60 (4, Suppl 2) 330-338 , discussion 338
- 54 Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg 2015; 123 (01) 206-211
- 55 van Doormaal TPC, van Doormaal JAM, Mensink T. Clinical Accuracy of Holographic Navigation Using Point-Based Registration on Augmented-Reality Glasses. Oper Neurosurg (Hagerstown) 2019; 17 (06) 588-593
- 56 Yavas G, Caliskan KE, Cagli MS. Three-dimensional-printed marker-based augmented reality neuronavigation: a new neuronavigation technique. Neurosurg Focus 2021; 51 (02) E20
- 57 Yoshino M, Saito T, Kin T. et al. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics. Neurol Med Chir (Tokyo) 2015; 55 (08) 674-679 https://doi.org/10.2176/nmc.tn.2014-0278
- 58 Zhao Y, Yu S, Wang R, Zhao J. Clinical application of a neuronavigation system in transsphenoidal surgery of pituitary macroadenoma. Neurosurg Rev 2006; 29 (04) 306-311 , discussion 311–312
- 59 Zhuang DX, Liu YX, Wu JS. et al. A sparse intraoperative data-driven biomechanical model to compensate for brain shift during neuronavigation. AJNR Am J Neuroradiol 2011; 32 (02) 395-402
- 60 Wang M, Song Z. How does adding anatomical landmarks as fiducial points in the point-matching registration of neuronavigation influence registration accuracy?. Comput Assist Surg (Abingdon) 2016; 21 (01) 39-45
- 61 Wang MN, Song ZJ. Classification and analysis of the errors in neuronavigation. Neurosurgery 2011; 68 (04) 1131-1143 , discussion 1143
- 62 FITZPATRICK. J. M.; WEST, J. B. The distribution of target registration error in rigid-body point-based registration. IEEE transactions on medical imaging, [s. l.], v. 20, n. 9, p. 917–927, 2001. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11585208/ . Acesso at: 4 Jun. 2022
- 63 Grauvogel TD, Engelskirchen P, Semper-Hogg W, Grauvogel J, Laszig R. Navigation accuracy after automatic- and hybrid-surface registration in sinus and skull base surgery. PLoS One 2017; 12 (07) e0180975
- 64 Kuehn B, Mularski S, Schoenherr S. et al. Sensor-based neuronavigation: evaluation of a large continuous patient population. Clin Neurol Neurosurg 2008; 110 (10) 1012-1019
- 65 Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 2008; 62 (3, Suppl 1) 201-207 , discussion 207–208
- 66 Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 2017; 40 (04) 537-548
- 67 Qi Z, Li Y, Xu X. et al. Holographic mixed-reality neuronavigation with a head-mounted device: technical feasibility and clinical application. Neurosurg Focus 2021; 51 (02) E22
- 68 Pereira ELR, Rodrigues BE, Gomes DL, Lima LO, Viegas LCM. Neuronavegação em neurocirurgia / Neuronavigation in neurosurgery. Braz Neurosurg 2014; 33 (04) 340-346
- 69 Drouin S, Kochanowska A, Kersten-Oertel M. et al. IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 2017; 12 (03) 363-378