RSS-Feed abonnieren
DOI: 10.1055/s-0044-1793943
Ex Vivo Biomechanical Comparison of Four Techniques to Tibiotarsus Osteosynthesis in Adult Laying Hens (Gallus gallus domesticus)

Abstract
Objective To assess the biomechanical parameters of intact tibiotarsi (INT) and tibiotarsi with a 5-mm segmental diaphyseal defect repaired using four osteosynthesis techniques: a locking plate (LP), a plate–rod combination, an external skeletal fixator (one end-threaded positive-profile pin per fragment) with an intramedullary pin tie-in (TIF 1), and an external skeletal fixator (two end-threaded positive-profile pins per fragment) with an intramedullary pin tie-in (TIF 2).
Study Design Sixty tibiotarsi from 30 adult laying hens were allocated into five groups for nondestructive dynamic torsion and four-point bending tests, followed by failure tests. Nondestructive dynamic tests evaluated stiffness over time in torsion and bending. Torsion destructive tests provided maximum torque and rotation values, whereas the four-point bending tests provided the yield load, maximum bending load, and maximum displacement.
Results The INT group showed higher torsional stiffness and maximum torque but similar bending stiffness, torsional strength, and bending strength in one or more groups. LP and TIF 2 exhibited the highest similarity frequencies among the treatment groups, whereas the TIF 1 group displayed lower stiffness and strength for most of the evaluated parameters.
Conclusion Similar results for LP and TIF-2 groups suggest the biomechanical equivalence of these methods for tibiotarsal osteosynthesis in adult hens.
Authors' Contribution
A.L.C., A.B.K.F., J.K.C., V.F.F., E.R.M., J.M.V., M.P.F. and M.M.A. contributed to the conception, study design, acquisition of data, data analysis and interpretation. All authors drafted, revised, and approved the submitted manuscript and are publicly responsible for the relevant content.
Publikationsverlauf
Eingereicht: 05. Oktober 2023
Angenommen: 04. Oktober 2024
Artikel online veröffentlicht:
15. November 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Harcourt-Brown NH. Orthopedic conditions that affect the avian pelvic limb. Vet Clin North Am Exot Anim Pract 2002; 5 (01) 49-81 , vi
- 2 Bush M. External fixation of avian fractures. J Am Vet Med Assoc 1977; 171 (09) 943-946
- 3 Alievi MM, Schossler JE, Hippler RA. et al. Closed reduction and type-II external skeletal fixation for treatment of tibiotarsus fractures in domestic pigeons (Columba livia) . Cienc Rural 2001; 31 (06) 1019-1025
- 4 Hatt JM, Christen C, Sandmeier P. Clinical application of an external fixator in the repair of bone fractures in 28 birds. Vet Rec 2007; 160 (06) 188-194
- 5 Redig PT. The use of an external skeletal fixator-intramedullary pin Tie-In (ESF-IM Fixator) for treatment of long bone fractures in raptors. In: Lumeij JT, Remple JD, Redig PT, Lierz M, Cooper JE. eds. Raptor Biomedicine III. Lake Worth, FL:: Zoological Educational Network;; 2000: 239-254
- 6 Van Wettere AJ, Redig PT, Wallace LJ, Bourgeault CA, Bechtold JE. Mechanical evaluation of external skeletal fixator-intramedullary pin tie-in configurations applied to cadaveral humeri from red-tailed hawks (Buteo jamaicensis). J Avian Med Surg 2009; 23 (04) 277-285
- 7 Bueno I, Redig PT, Rendahl AK. External skeletal fixator intramedullary pin tie-in for the repair of tibiotarsal fractures in raptors: 37 cases (1995-2011). J Am Vet Med Assoc 2015; 247 (10) 1154-1160
- 8 Hollamby S, Dejardin LM, Sikarskie JG, Haeger J. Tibiotarsal fracture repair in a bald eagle (Haliaeetus leucocephalus) using an interlocking nail. J Zoo Wildl Med 2004; 35 (01) 77-81
- 9 Stejskal M, Radisic B, Pecin M. et al. Interlocking nail for tibiotarsal fracture repair in a black swan (Cygnus atratus) - a case report. Vet Arh 2011; 81 (06) 785-791
- 10 Gouvea AS, Alievi MM, Noriega V. et al. Titanium microplates for treatment of tibiotarsus fractures in pigeons. Cienc Rural 2011; 41 (03) 476-482
- 11 Dal-Bo IS, Alievi MM, Silva LM. et al. Tibiotarsus osteosynthesis in blue-yellow-macaw (Ara ararauna) using titanium miniplate. Arq Bras Med Vet Zootec 2011; 63 (04) 1003-1006
- 12 Guzman DS, Bubenik LJ, Lauer SK, Vasanjee S, Mitchell MA. Repair of a coracoid luxation and a tibiotarsal fracture in a bald eagle (Haliaeetus leucocephalus). J Avian Med Surg 2007; 21 (03) 188-195
- 13 Slunsky P, Weiß J, Haake A, Shahid M, Brunnberg L, Müller K. Repair of a tibiotarsal fracture in a Pomeranian Goose (Anser anser) with a locking plate. J Avian Med Surg 2018; 32 (01) 50-56
- 14 Martin HD, Ritchie BW. Orthopedic surgical techniques. In: Ritchie BW, Harrison GJ, Harrison LR. eds. Avian Medicine: Principles and Application. Lake Worth, FL: Wingers Publishing;; 1994
- 15 Guzman DSM. Orthopedic surgery: use and application of plates for fracture repair. In: Samour J. ed. Avian Medicine, 3rd ed. Maryland Heights, MO:: Mosby;; 2015
- 16 Darrow BG, Weigel JP, Greenacre CB, Xie X, Liaw PK, Biskup JJ. Ex vivo biomechanical comparison of titanium locking plate, stainless steel nonlocking plate, and Tie-in external fixator applied by a dorsal approach on ostectomized humeri of pigeons (Columba livia). J Avian Med Surg 2019; 33 (01) 29-37
- 17 Darrow BG, Biskup JJ, Weigel JP. et al. Ex vivo biomechanical evaluation of pigeon (Columba livia) cadaver intact humeri and ostectomized humeri stabilized with caudally applied titanium locking plate or stainless steel nonlocking plate constructs. Am J Vet Res 2017; 78 (05) 570-578
- 18 An YH, Barfield WR, Draughn RA. Basic concepts of mechanical property measurement and bone biomechanics. In: An YH, Draughn RA. eds. Mechanical Testing of Bone and the Bone-Implant Interface. Boca Raton, FL:: CRC Press;; 2000
- 19 Hoffler CE, McCreadie BR, Smith EA. et al. A hierarchical approach to exploring bone mechanical properties. In: An YH, Draughn RA. . eds. Mechanical Testing of Bone and the Bone-Implant Interface. Boca Raton, FL: CRC Press; 2000: 133-146
- 20 Currey JD. Bones, Structure and Mechanics. Princeton, NJ:: Princeton University Press:; 2002: 436
- 21 Van Wettere AJ, Wallace LJ, Redig PT, Bourgeault CA, Bechtold JE. Mechanical evaluation of various external skeletal fixator-intramedullary pin tie-in configurations using a tubular plastic bone model. J Avian Med Surg 2009; 23 (04) 263-276
- 22 Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993; 14 (04) 595-608
- 23 Hersh-Boyle RA, Kapatkin AS, Garcia TC. et al. Comparison of torsional properties between a Fixateur Externe du Service de Santé des Armées and an acrylic tie-in external skeletal fixator in a red-tailed hawk (Buteo jamaicensis) synthetic tibiotarsal bone model. Am J Vet Res 2020; 81 (07) 557-564
- 24 Kerrigan SM, Kapatkin AS, Garcia TC, Robinson DA, Guzman DS, Stover SM. Torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis). Am J Vet Res 2018; 79 (04) 388-396
- 25 Okazaki Y, Gotoh E, Mori J. Strength-durability correlation of osteosynthesis devices made by 3D layer manufacturing. Materials (Basel) 2019; 12 (03) 436
- 26 Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res 2015; 30 (06) 951-966
- 27 Biewener AA, Swartz SM, Bertram JE. Bone modeling during growth: dynamic strain equilibrium in the chick tibiotarsus. Calcif Tissue Int 1986; 39 (06) 390-395
- 28 Davolt ML, Davis E, McCleery B, Davis G. Biomechanical analysis of 3 fixation techniques in rabbit radius and humerus bones. Can Vet J 2022; 63 (05) 521-527
- 29 Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 2003; 21 (06) 1011-1017
- 30 Hulse D, Hyman W, Nori M, Slater M. Reduction in plate strain by addition of an intramedullary pin. Vet Surg 1997; 26 (06) 451-459
- 31 Hulse D, Ferry K, Fawcett A. et al. Effect of intramedullary pin size on reducing bone plate strain. Vet Comp Orthop Traumatol 2000; 13 (04) 185-190
- 32 Castaldo S, Syrcle J, Elder S, Wills RW. Biomechanical comparison of external fixation and double plating for stabilization of a canine cadaveric supracondylar humeral fracture gap model. Vet Comp Orthop Traumatol 2021; 34 (03) 171-177
- 33 Muro NM, Gilley RS, Kemper AR, Benitez ME, Barry SL, McNally C. Stiffness of a type II external skeletal fixator and locking compression plate in a fracture gap model. Vet Surg 2021; 50 (03) 622-632
- 34 Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 2005; 23 (05) 1022-1028
- 35 Redig PT, Ponter J. Orthopedic surgery: management of orthopedic issues in birds. In: Samour J. ed. Avian Medicine, 3rd ed. Maryland Heights, MO: Mosby; 2015