Subscribe to RSS
DOI: 10.1055/s-0044-1791232
Potential of Sulodexide in the Treatment of Diabetic Retinopathy and Retinal Vein Occlusion
Abstract
Retinal vascular diseases, such as diabetic retinopathy or retinal vein occlusion, are common causes of severe vision loss. Central to the pathophysiology of these conditions are endothelial dysfunction, inflammation, capillary leakage, ischemia, and pathological neoangiogenesis. Capillary damage leads to leakage and the development of macular edema, which is associated with vision loss and requires complex treatment. Sulodexide, a glycosaminoglycan composed of heparan sulfate and dermatan sulfate with high oral bioavailability, exhibits several favorable pharmacologic properties, including antithrombotic, anti-inflammatory, and endothelium-protective effects. Additionally, treatment with sulodexide has been associated with the reduction of oxidative stress and decreased expression of angiogenic growth factors, such as vascular endothelial growth factor. This review aims to provide an overview of the pharmacological properties, mechanisms of action, and therapeutic effects of sulodexide. Furthermore, its potential for clinical application in venous and diabetic diseases, such as venous thromboembolism, chronic venous insufficiency, peripheral artery disease, or diabetic nephropathy, is summarized. We also present experimental and clinical studies evaluating the potential of sulodexide in ocular conditions and discuss its therapeutic implications for the treatment of retinal vascular diseases.
Keywords
sulodexide - retinal vein occlusion - diabetic retinopathy - vascular endothelial growth factor - oxidative stressAuthors' Contribution
E.W.B. and A.G. wrote the manuscript. F.B., C.A.K., A.D., A.B., and N.P. made critical revisions. F.B. was responsible for figure editing. All authors reviewed the manuscript.
Publication History
Received: 29 May 2024
Accepted: 27 August 2024
Article published online:
18 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Böhm EW, Buonfiglio F, Voigt AM. et al. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68: 102967
- 2 Kvandová M, Rajlic S, Stamm P. et al. Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological α1AMPK activation: molecular proof of a protective key role of endothelial α1AMPK against environmental noise exposure. Eur J Prev Cardiol 2023; 30 (15) 1554-1568
- 3 Scott IU, Campochiaro PA, Newman NJ, Biousse V. Retinal vascular occlusions. Lancet 2020; 396 (10266): 1927-1940
- 4 Chattopadhyay C, Kim DW, Gombos DS. et al. Uveal melanoma: from diagnosis to treatment and the science in between. Cancer 2016; 122 (15) 2299-2312
- 5 Carroll BJ, Piazza G, Goldhaber SZ. Sulodexide in venous disease. J Thromb Haemost 2019; 17 (01) 31-38
- 6 Bignamini AA, Chebil A, Gambaro G, Matuška J. Sulodexide for diabetic-induced disabilities: a systematic review and meta-analysis. Adv Ther 2021; 38 (03) 1483-1513
- 7 Afratis N, Gialeli C, Nikitovic D. et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012; 279 (07) 1177-1197
- 8 Veraldi N, Guerrini M, Urso E. et al. Fine structural characterization of sulodexide. J Pharm Biomed Anal 2018; 156: 67-79
- 9 Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther 2013; 8: 49-65
- 10 Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS One 2012; 7 (11) e48632
- 11 Harenberg J. Review of pharmacodynamics, pharmacokinetics, and therapeutic properties of sulodexide. Med Res Rev 1998; 18 (01) 1-20
- 12 Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 2002; 12 (09) 117R-125R
- 13 Tollefsen DM. Vascular dermatan sulfate and heparin cofactor II. Prog Mol Biol Transl Sci 2010; 93: 351-372
- 14 Milani M, Busutti L, Breccia A, Fini A, Piani S, Marchi E. Pharmacokinetics of sulodexide evaluated from 131I-labelled fast-moving heparin after single intravenous and oral administration on man at different doses. Br J Clin Res 1992; 3: 161-178
- 15 Marchi E, Barbanti M, Milani R, Breccia A, Fini A, Gattavecchia E. Organ glycosaminoglycan distribution after intravenous and oral administration in rats. Semin Thromb Hemost 1994; 20 (03) 297-300
- 16 Cosmi B, Cini M, Legnani C, Pancani C, Calanni F, Coccheri S. Additive thrombin inhibition by fast moving heparin and dermatan sulfate explains the anticoagulant effect of sulodexide, a natural mixture of glycosaminoglycans. Thromb Res 2003; 109 (5–6): 333-339
- 17 Borawski J, Naumnik B, Dubowski M, Mysliwiec M. Full-length TFPI release by heparinoid sulodexide. Clin Appl Thromb Hemost 2010; 16 (04) 485-487
- 18 Adiguzel C, Iqbal O, Hoppensteadt D. et al. Comparative anticoagulant and platelet modulatory effects of enoxaparin and sulodexide. Clin Appl Thromb Hemost 2009; 15 (05) 501-511
- 19 Du S, Harenberg J, Krämer S, Krämer R, Wehling M, Weiss C. Measurement of non-vitamin K antagonist oral anticoagulants in patient plasma using Heptest-STAT coagulation method. Ther Drug Monit 2015; 37 (03) 375-380
- 20 Mauro M, Palmieri GC, Palazzini E, Barbanti M, Calanni Rindina F, Milani MR. Pharmacodynamic effects of single and repeated doses of oral sulodexide in healthy volunteers. A placebo-controlled study with an enteric-coated formulation. Curr Med Res Opin 1993; 13 (02) 87-95
- 21 Barbanti M, Guizzardi S, Calanni F, Marchi E, Babbini M. Antithrombotic and thrombolytic activity of sulodexide in rats. Int J Clin Lab Res 1992; 22 (03) 179-184
- 22 Ceriello A, Quatraro A, Marchi E, Barbanti M, Giugliano D. Impaired fibrinolytic response to increased thrombin activation in type 1 diabetes mellitus: effects of the glycosaminoglycan sulodexide. Diabete Metab 1993; 19 (02) 225-229
- 23 Crepaldi G, Rossi A, Coscetti G, Abbruzzese E, Calveri U, Calabrò A. Sulodexide oral administration influences blood viscosity and fibrinolysis. Drugs Exp Clin Res 1992; 18 (05) 189-195
- 24 Messa GL, La Placa G, Puccetti L. et al. Pharmacodynamic effects of sulodexide on profibrinolytic and haemorrheological patterns. Clin Drug Investig 1995; 10 (03) 165-171
- 25 Cerletti C, Rajtar G, Marchi E, de Gaetano G. Interaction between glycosaminoglycans, platelets, and leukocytes. Semin Thromb Hemost 1994; 20 (03) 245-253
- 26 Foote CA, Soares RN, Ramirez-Perez FI. et al. Endothelial glycocalyx. Compr Physiol 2022; 12 (04) 3781-3811
- 27 Masola V, Onisto M, Zaza G, Lupo A, Gambaro G. A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition. J Transl Med 2012; 10: 213
- 28 Blich M, Golan A, Arvatz G. et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2013; 33 (02) e56-e65
- 29 Li T, Liu X, Zhao Z, Ni L, Liu C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget 2017; 8 (53) 91350-91361
- 30 Broekhuizen LN, Lemkes BA, Mooij HL. et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53 (12) 2646-2655
- 31 Ying J, Zhang C, Wang Y. et al. Sulodexide improves vascular permeability via glycocalyx remodelling in endothelial cells during sepsis. Front Immunol 2023; 14: 1172892
- 32 Mannello F, Medda V, Ligi D, Raffetto JD. Glycosaminoglycan sulodexide inhibition of MMP-9 gelatinase secretion and activity: possible pharmacological role against collagen degradation in vascular chronic diseases. Curr Vasc Pharmacol 2013; 11 (03) 354-365
- 33 Raffetto JD, Yu W, Wang X, Calanni F, Mattana P, Khalil RA. Sulodexide improves contraction and decreases matrix metalloproteinase-2 and -9 in veins under prolonged stretch. J Cardiovasc Pharmacol 2020; 75 (03) 211-221
- 34 Serra R, Gallelli L, Conti A. et al. The effects of sulodexide on both clinical and molecular parameters in patients with mixed arterial and venous ulcers of lower limbs. Drug Des Devel Ther 2014; 8: 519-527
- 35 Mannello F, Ligi D, Canale M, Raffetto JD. Sulodexide down-regulates the release of cytokines, chemokines, and leukocyte colony stimulating factors from human macrophages: role of glycosaminoglycans in inflammatory pathways of chronic venous disease. Curr Vasc Pharmacol 2014; 12 (01) 173-185
- 36 Ligi D, Mosti G, Croce L, Raffetto JD, Mannello F. Chronic venous disease - Part I: inflammatory biomarkers in wound healing. Biochim Biophys Acta 2016; 1862 (10) 1964-1974
- 37 Urbanek T, Krasinski Z, Sumińska-Jasińska K. et al. Sulodexide reduces the inflammatory reaction and senescence of endothelial cells in conditions involving chronic venous disease. Int Angiol 2016; 35 (02) 140-147
- 38 Ciszewicz M, Polubinska A, Antoniewicz A, Suminska-Jasinska K, Breborowicz A. Sulodexide suppresses inflammation in human endothelial cells and prevents glucose cytotoxicity. Transl Res 2009; 153 (03) 118-123
- 39 Ligi D, Croce L, Mosti G, Raffetto JD, Mannello F. Chronic venous insufficiency: transforming growth factor-β isoforms and soluble endoglin concentration in different states of wound healing. Int J Mol Sci 2017; 18 (10) 2206
- 40 Skrha J, Perusicová J, Kvasnicka J, Hilgertová J. The effect of glycosaminoglycan sulodexide on oxidative stress and fibrinolysis in diabetes mellitus. Sb Lek 1998; 99 (02) 103-109
- 41 Liu YN, Zhou J, Li T. et al. Sulodexide protects renal tubular epithelial cells from oxidative stress-induced injury via upregulating Klotho expression at an early stage of diabetic kidney disease. J Diabetes Res 2017; 2017: 4989847
- 42 Shen D, Chen R, Zhang L. et al. Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway. J Cell Mol Med 2019; 23 (08) 5063-5075
- 43 Bontor K, Gabryel B. Sulodexide increases glutathione synthesis and causes pro-reducing shift in glutathione-redox state in HUVECs exposed to oxygen-glucose deprivation: implication for protection of endothelium against ischemic injury. Molecules 2022; 27 (17) 5465
- 44 Gabryel B, Jarząbek K, Machnik G. et al. Superoxide dismutase 1 and glutathione peroxidase 1 are involved in the protective effect of sulodexide on vascular endothelial cells exposed to oxygen-glucose deprivation. Microvasc Res 2016; 103: 26-35
- 45 Raffetto JD, Calanni F, Mattana P, Khalil RA. Sulodexide promotes arterial relaxation via endothelium-dependent nitric oxide-mediated pathway. Biochem Pharmacol 2019; 166: 347-356
- 46 Kristová V, Líšková S, Sotníková R, Vojtko R, Kurtanský A. Sulodexide improves endothelial dysfunction in streptozotocin-induced diabetes in rats. Physiol Res 2008; 57 (03) 491-494
- 47 Vásquez J, Mathison Y, Romero-Vecchione E, Suárez C. Effect of sulodexide on aortic vasodilation capacity and associated morphological changes in rats with streptozotocin-induced diabetes [in Spanish]. Invest Clin 2010; 51 (04) 467-477
- 48 Crepaldi G, Fellin R, Calabrò A. et al. Double-blind multicenter trial on a new medium molecular weight glycosaminoglycan. Current therapeutic effects and perspectives for clinical use. Atherosclerosis 1990; 81 (03) 233-243
- 49 Pisano L, Moronesi F, Falco F. et al. The use of sulodexide in the treatment of peripheral vasculopathy accompanying metabolic diseases. Controlled study in hyperlipidemic and diabetic subjects. Thromb Res 1986; 41 (01) 23-31
- 50 Ligi D, Benitez S, Croce L. et al. Electronegative LDL induces MMP-9 and TIMP-1 release in monocytes through CD14 activation: inhibitory effect of glycosaminoglycan sulodexide. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (12) 3559-3567
- 51 Farrell JJ, Sutter C, Tavri S, Patel I. Incidence and interventions for post-thrombotic syndrome. Cardiovasc Diagn Ther 2016; 6 (06) 623-631
- 52 Errichi BM, Cesarone MR, Belcaro G. et al. Prevention of recurrent deep venous thrombosis with sulodexide: the SanVal registry. Angiology 2004; 55 (03) 243-249
- 53 Belcaro G, Dugall M, Hu S. et al. Prevention of recurrent venous thrombosis and post-thrombotic syndrome. Minerva Cardioangiol 2018; 66 (03) 238-245
- 54 Luzzi R, Belcaro G, Dugall M. et al. The efficacy of sulodexide in the prevention of postthrombotic syndrome. Clin Appl Thromb Hemost 2014; 20 (06) 594-599
- 55 Andreozzi GM, Bignamini AA, Davì G. et al; SURVET Study Investigators. Sulodexide for the prevention of recurrent venous thromboembolism: the Sulodexide in Secondary Prevention of Recurrent Deep Vein Thrombosis (SURVET) study: a multicenter, randomized, double-blind, placebo-controlled trial. Circulation 2015; 132 (20) 1891-1897
- 56 Bikdeli B, Chatterjee S, Kirtane AJ. et al. Sulodexide versus control and the risk of thrombotic and hemorrhagic events: meta-analysis of randomized trials. Semin Thromb Hemost 2020; 46 (08) 908-918
- 57 Cospite M, Ferrara F, Cospite V, Palazzini E. Sulodexide and the microcirculatory component in microphlebopathies. Curr Med Res Opin 1992; 13 (01) 56-60
- 58 Saviano M, Maleti O, Liguori L. Double-blind, double-dummy, randomized, multi-centre clinical assessment of the efficacy, tolerability and dose-effect relationship of sulodexide in chronic venous insufficiency. Curr Med Res Opin 1993; 13 (02) 96-108
- 59 Elleuch N, Zidi H, Bellamine Z, Hamdane A, Guerchi M, Jellazi N. CVD study investigators. Sulodexide in patients with chronic venous disease of the lower limbs: clinical efficacy and impact on quality of life. Adv Ther 2016; 33 (09) 1536-1549
- 60 Chupin AV, Katorkin SE, Katelnitsky II. et al. Sulodexide in the treatment of chronic venous insufficiency: results of the all-Russian multicenter ACVEDUCT program. Adv Ther 2020; 37 (05) 2071-2082
- 61 Flota Cervera LF, Frati Munari AC, Velázquez Herrera ÁE, Carbajal Contreras A. Chronic venous disease treated with sulodexide: a survey among primary care physicians in Mexico. Int Angiol 2017; 36 (06) 558-564
- 62 Borawski J, Dubowski M, Pawlak K, Mysliwiec M. Sulodexide induces hepatocyte growth factor release in humans. Eur J Pharmacol 2007; 558 (1–3): 167-171
- 63 Coccheri S, Scondotto G, Agnelli G, Aloisi D, Palazzini E, Zamboni V. Venous arm of the SUAVIS (Sulodexide Arterial Venous Italian Study) Group. Randomised, double blind, multicentre, placebo controlled study of sulodexide in the treatment of venous leg ulcers. Thromb Haemost 2002; 87 (06) 947-952
- 64 Wu B, Lu J, Yang M, Xu T. Sulodexide for treating venous leg ulcers. Cochrane Database Syst Rev 2016; 2016 (06) CD010694
- 65 González Ochoa A. Sulodexide and phlebotonics in the treatment of venous ulcer. Int Angiol 2017; 36 (01) 82-87
- 66 Pompilio G, Nicolaides A, Kakkos SK, Integlia D. Systematic literature review and network Meta-analysis of sulodexide and other drugs in chronic venous disease. Phlebology 2021; 36 (09) 695-709
- 67 Gaddi AV, Capello F, Gheorghe-Fronea OF, Fadda S, Darabont RO. Sulodexide improves pain-free walking distance in patients with lower extremity peripheral arterial disease: a systematic review and meta-analysis. JRSM Cardiovasc Dis 2020; 9: 2048004020907002
- 68 Cicco G, Stingi GD, Vicenti P, Tarallo MS, Pirrelli A. Hemorheology and tissue oxygenation in hypertensives with lipoidoproteinosis and peripheral occlusive arterial disease (POAD) treated with sulodexide and pravastatine and evaluated with laser assisted optical rotational red cell analyzer (LORCA) and transcutaneous oxymetry. Minerva Cardioangiol 1999; 47 (10) 351-359
- 69 Li R, Xing J, Mu X. et al. Sulodexide therapy for the treatment of diabetic nephropathy, a meta-analysis and literature review. Drug Des Devel Ther 2015; 9: 6275-6283
- 70 Rossini M, Naito T, Yang H. et al. Sulodexide ameliorates early but not late kidney disease in models of radiation nephropathy and diabetic nephropathy. Nephrol Dial Transplant 2010; 25 (06) 1803-1810
- 71 Zilişteanu DS, Atasie T, Voiculescu M. Efficacy of long-term low-dose sulodexide in diabetic and non-diabetic nephropathies. Rom J Intern Med 2015; 53 (02) 161-169
- 72 Yongwatana K, Supasyndh O, Satirapoj B. Renal effects of sulodexide in type 2 diabetic patients without nephrotic range proteinuria. J Diabetes Res 2020; 2020: 2984680
- 73 Koblik T, Sieradzki J, Sendur R. et al. The effect of insulin and sulodexide (Vessel Due F) on diabetic foot syndrome: pilot study in elderly patients. J Diabetes Complications 2001; 15 (02) 69-74
- 74 Katorkin SE. Significance of endothelial protection in treatment of patients with class c6 chronic venous disease and type 2 diabetes mellitus [in Russian]. Angiol Sosud Khir 2015; 21 (03) 99-102 , 104–106
- 75 Zakharova NO, Bulgakova SV, Katorkin SE, Melnikov MA, Treneva EV, Nikolaeva AV. The treatment of elderly and senile patients with venous trophic ulcers and type 2 diabetes mellitus [in Russian]. Usp Gerontol 2017; 30 (06) 917-924
- 76 Song JH, Chin HS, Kwon OW, Lim SJ, Kim HK. DRESS Research Group. Effect of sulodexide in patients with non-proliferative diabetic retinopathy: diabetic retinopathy sulodexide study (DRESS). Graefes Arch Clin Exp Ophthalmol 2015; 253 (06) 829-837
- 77 Yuan Y, Dong M, Wen S, Yuan X, Zhou L. Retinal microcirculation: a window into systemic circulation and metabolic disease. Exp Eye Res 2024; 242: 109885
- 78 Teo ZL, Tham YC, Yu M. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 2021; 128 (11) 1580-1591
- 79 GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9 (02) e144-e160
- 80 Browning DJ, Stewart MW, Lee C. Diabetic macular edema: evidence-based management. Indian J Ophthalmol 2018; 66 (12) 1736-1750
- 81 Fung TH, Patel B, Wilmot EG, Amoaku WM. Diabetic retinopathy for the non-ophthalmologist. Clin Med (Lond) 2022; 22 (02) 112-116
- 82 Group ETDRSR. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 1991; 98 (5, Suppl): 741-756
- 83 Kollias AN, Ulbig MW. Diabetic retinopathy: early diagnosis and effective treatment. Dtsch Arztebl Int 2010; 107 (05) 75-83 , quiz 84
- 84 Tan TE, Wong TY. Diabetic retinopathy: looking forward to 2030. Front Endocrinol (Lausanne) 2023; 13: 1077669
- 85 Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retina 2018; 2 (10) 997-1009
- 86 Dauth A, Bręborowicz A, Ruan Y. et al. Sulodexide prevents hyperglycemia-induced endothelial dysfunction and oxidative stress in porcine retinal arterioles. Antioxidants 2023; 12 (02) 388
- 87 Gericke A, Suminska-Jasińska K, Bręborowicz A. Sulodexide reduces glucose induced senescence in human retinal endothelial cells. Sci Rep 2021; 11 (01) 11532
- 88 Giurdanella G, Lazzara F, Caporarello N. et al. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochem Pharmacol 2017; 142: 145-154
- 89 Gambaro G, Kinalska I, Oksa A. et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002; 13 (06) 1615-1625
- 90 Rubbi F, Caramazza R, Boccia S. The effects of sulodexide on diabetic retinopathy. Minerva Cardioangiol 2000; 48: 81-82
- 91 Song P, Xu Y, Zha M, Zhang Y, Rudan I. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health 2019; 9 (01) 010427
- 92 Nicholson L, Talks SJ, Amoaku W, Talks K, Sivaprasad S. Retinal vein occlusion (RVO) guideline: executive summary. Eye (Lond) 2022; 36 (05) 909-912
- 93 Zhao J, Sastry SM, Sperduto RD, Chew EY, Remaley NA. The Eye Disease Case-Control Study Group. Arteriovenous crossing patterns in branch retinal vein occlusion. Ophthalmology 1993; 100 (03) 423-428
- 94 Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS. et al. Guidelines for the management of retinal vein occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019; 242 (03) 123-162
- 95 Nicholson L, Vazquez-Alfageme C, Sen P. et al. The clinical relevance of ultra-widefield angiography findings in patients with central retinal vein occlusion and macular oedema receiving anti-VEGF therapy. Eye (Lond) 2022; 36 (05) 1086-1093
- 96 Ageno W, Cattaneo R, Manfredi E. et al. Parnaparin versus aspirin in the treatment of retinal vein occlusion. A randomized, double blind, controlled study. Thromb Res 2010; 125 (02) 137-141
- 97 Lazo-Langner A, Hawel J, Ageno W, Kovacs MJ. Low molecular weight heparin for the treatment of retinal vein occlusion: a systematic review and meta-analysis of randomized trials. Haematologica 2010; 95 (09) 1587-1593
- 98 Valeriani E, Paciullo F, Porfidia A. et al. Antithrombotic treatment for retinal vein occlusion: a systematic review and meta-analysis. J Thromb Haemost 2023; 21 (02) 284-293
- 99 Singh PP, Borkar DS, Robbins CB. et al. Systemic antiplatelet agents and anticoagulants in eyes with branch retinal vein occlusion. Ther Adv Ophthalmol 2021;13:25158414211040894
- 100 Thomas GN, Kiew SY, Singh P, Dmitriev P, Thomas AS, Fekrat S. Central retinal vein occlusion: the effect of antiplatelet and anticoagulant agents. J Vitreoretin Dis 2021; 6 (02) 97-103
- 101 Paciullo F, Valeriani E, Porfidia A. et al. Antithrombotic treatment of retinal vein occlusion: a position statement from the Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus 2022; 20 (04) 341-347
- 102 Nishinaka A, Inoue Y, Fuma S. et al. Pathophysiological role of VEGF on retinal edema and nonperfused areas in mouse eyes with retinal vein occlusion. Invest Ophthalmol Vis Sci 2018; 59 (11) 4701-4713
- 103 Jo H, Jung SH, Kang J, Yim HB, Kang KD. Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep 2014; 47 (11) 637-642
- 104 Belcaro G, Dugall M, Bradford HD. et al. Recurrent retinal vein thrombosis: prevention with Aspirin, Pycnogenol®, ticlopidine, or sulodexide. Minerva Cardioangiol 2019; 67 (02) 109-114
- 105 Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 2013; 27 (07) 787-794
- 106 Peto T, Akerele T, Sagkriotis A, Zappacosta S, Clemens A, Chakravarthy U. Treatment patterns and persistence rates with anti-vascular endothelial growth factor treatment for diabetic macular oedema in the UK: A real-world study. Diabet Med 2022; 39 (04) e14746
- 107 Hertzberg SNW, Jørstad ØK, Petrovski BÉ. et al. Transition from laser to intravitreal injections for diabetic retinopathy: hospital utilization and costs from an extended healthcare perspective. Int J Environ Res Public Health 2022; 19 (19) 12603
- 108 Pletinck A, Van Landschoot M, Steppan S. et al. Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant 2012; 27 (02) 548-556
- 109 Niderla-Bielińska J, Bartkowiak K, Ciszek B, Jankowska-Steifer E, Krejner A, Ratajska A. Sulodexide inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Fundam Clin Pharmacol 2019; 33 (02) 159-169
- 110 Iorga RE, Costin D, Munteanu-Dănulescu RS, Rezuș E, Moraru AD. Non-invasive retinal vessel analysis as a predictor for cardiovascular disease. J Pers Med 2024; 14 (05) 501
- 111 Gerstein HC, Ambrosius WT, Danis R. et al; ACCORD Study Group. Diabetic retinopathy, its progression, and incident cardiovascular events in the ACCORD trial. Diabetes Care 2013; 36 (05) 1266-1271
- 112 Umeya R, Yoshida Y, Ono K. Impact of retinal vein occlusion on cardiovascular events in elderly Japanese patients. Medicine (Baltimore) 2021; 100 (52) e28424
- 113 Wu CY, Riangwiwat T, Limpruttidham N, Rattanawong P, Rosen RB, Deobhakta A. ASSOCIATION OF RETINAL VEIN OCCLUSION WITH CARDIOVASCULAR EVENTS AND MORTALITY: A Systematic Review and Meta-analysis. Retina 2019; 39 (09) 1635-1645
- 114 Ponto KA, Scharrer I, Binder H. et al. Hypertension and multiple cardiovascular risk factors increase the risk for retinal vein occlusions: results from the Gutenberg Retinal Vein Occlusion Study. J Hypertens 2019; 37 (07) 1372-1383
- 115 Urbanek T, Zbigniew K, Begier-Krasińska B, Baum E, Bręborowicz A. Sulodexide suppresses inflammation in patients with chronic venous insufficiency. Int Angiol 2015; 34 (06) 589-596
- 116 Kaczmarek B, Kozłowska M, Narbutt J, Adamski Z, Adamska K, Kaszuba A. Concentrations of selected acute phase proteins in patients with chronic venous insufficiency treated with Sulodexide. Part 1. Postepy Dermatol Alergol 2023; 40 (01) 126-133
- 117 Satirapoj B, Kaewput W, Supasyndh O, Ruangkanchanasetr P. Effect of sulodexide on urinary biomarkers of kidney injury in normoalbuminuric type 2 diabetes: a randomized controlled trial. J Diabetes Res 2015; 2015: 172038