Subscribe to RSS

DOI: 10.1055/s-0044-1791230
Real-Time Evaluation of Lumbar Instability Using Dynamic MRI: A Commentary on Current Approaches and Developmental Opportunities
Funding None.

Abstract
This brief commentary presents the current approaches and challenges concerning the use of dynamic magnetic resonance imaging (MRI) to evaluate lumbar instability in real time. In a continuum of using end-of-range static imaging to detect and quantify lumbar instability, this commentary outlines current approaches, limitations, and potential developmental opportunities of using MRI to quantify dynamic intervertebral displacements for investigating mechanistic underpinnings of back pain.
Publication History
Article published online:
26 September 2024
© 2024. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1
Leone A,
Cianfoni A,
Cerase A,
Magarelli N,
Bonomo L.
Lumbar spondylolysis: a review. Skeletal Radiol 2011; 40 (06) 683-700
MissingFormLabel
- 2
Chen SR,
LeVasseur CM,
Pitcairn S.
et al.
In vivo evidence of early instability and late stabilization in motion segments immediately
superior to anterior cervical arthrodesis. Spine 2022; 47 (17) 1234-1240
MissingFormLabel
- 3
Sengupta DK,
Fan H.
The basis of mechanical instability in degenerative disc disease: a cadaveric study
of abnormal motion versus load distribution. Spine 2014; 39 (13) 1032-1043
MissingFormLabel
- 4
Canal S,
Tamburro R,
Falerno I.
et al.
Development of real-time kinematic magnetic resonance imaging (kMRI) techniques for
studying the kinematics of the spine and joints in dogs-preliminary study on cadavers.
Animals (Basel) 2022; 12 (20) 2790
MissingFormLabel
- 5
Aleksiev M,
Krämer M,
Brisson NM,
Maggioni MB,
Duda GN,
Reichenbach JR.
High-resolution CINE imaging of active guided knee motion using continuously acquired
golden-angle radial MRI and rotary sensor information. Magn Reson Imaging 2022; 92:
161-168
MissingFormLabel
- 6
Panjabi MM.
The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis.
J Spinal Disord 1992; 5 (04) 390-396 , discussion 397
MissingFormLabel
- 7
Panjabi MM.
Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003; 13 (04)
371-379
MissingFormLabel
- 8
Mahato NK.
Complexity of neutral zones, lumbar stability and subsystem adaptations: probable
alterations in lumbosacral transitional vertebrae (LSTV) subtypes. Med Hypotheses
2013; 80 (01) 61-64
MissingFormLabel
- 9
Zhang F,
Wang H,
Xu H.
et al.
Radiologic analysis of kinematic characteristics of modic changes based on lumbar
disc degeneration grade. World Neurosurg 2018; 114: e851-e856
MissingFormLabel
- 10
Alyas F,
Connell D,
Saifuddin A.
Upright positional MRI of the lumbar spine. Clin Radiol 2008; 63 (09) 1035-1048
MissingFormLabel
- 11
Mahato NK,
Maharaj P,
Clark BC.
Lumbar spine anatomy in supine versus weight- bearing magnetic resonance imaging:
detecting significant positional changes and testing reliability of quantification.
Asian Spine J 2024; 18 (01) 1-11
MissingFormLabel
- 12
Zhou QS,
Sun X,
Chen X.
et al.
Utility of natural sitting lateral radiograph in the diagnosis of segmental instability
for patients with degenerative lumbar spondylolisthesis. Clin Orthop Relat Res 2021;
479 (04) 817-825
MissingFormLabel
- 13
Walter WR,
Alizai H,
Bruno M,
Portugal S,
Burke CJ.
Real-time dynamic 3-T MRI assessment of spine kinematics: a feasibility study utilizing
three different fast pulse sequences. Acta Radiol 2021; 62 (01) 58-66
MissingFormLabel
- 14
Paholpak P,
Tamai K,
Shoell K,
Sessumpun K,
Buser Z,
Wang JC.
Can multi-positional magnetic resonance imaging be used to evaluate angular parameters
in cervical spine? A comparison of multi-positional MRI to dynamic plain radiograph.
Eur Spine J 2018; 27 (05) 1021-1027
MissingFormLabel
- 15
Walter WR,
Burke CJ.
Editorial commentary: real-time dynamic magnetic resonance imaging of the patellofemoral
joint: ready for prime time?. Arthroscopy 2022; 38 (05) 1581-1583
MissingFormLabel
- 16
Burke CJ,
Samim M,
Babb JS,
Walter WR.
Utility of a 2D kinematic HASTE sequence in magnetic resonance imaging assessment
of adjacent segment degeneration following anterior cervical discectomy and fusion.
Eur Radiol 2024; 34 (02) 1113-1122
MissingFormLabel
- 17
Allmann KH,
Schäfer O,
Uhl M.
et al.
Kinematic versus static MRI study of the cervical spine in patients with rheumatoid
arthritis. Rofo 1999; 170 (01) 22-27
MissingFormLabel
- 18
Ellingson AM,
Nagel TM,
Polly DW,
Ellermann J,
Nuckley DJ.
Quantitative T2* (T2 star) relaxation times predict site specific proteoglycan content
and residual mechanics of the intervertebral disc throughout degeneration. J Orthop
Res 2014; 32 (08) 1083-1089
MissingFormLabel
- 19
Lao L,
Daubs MD,
Takahashi S.
et al.
Kinetic magnetic resonance imaging analysis of lumbar segmental motion at levels adjacent
to disc herniation. Eur Spine J 2016; 25 (01) 222-229
MissingFormLabel
- 20
Mahato NK,
Sybert D,
Law T,
Clark B.
Effects of spine loading in a patient with post-decompression lumbar disc herniation:
observations using an open weight-bearing MRI. Eur Spine J 2017; 26 (Suppl. 01) 17-23
MissingFormLabel
- 21
Rijken NH,
van Engelen BG,
de Rooy JW,
Geurts AC,
Weerdesteyn V.
Trunk muscle involvement is most critical for the loss of balance control in patients
with facioscapulohumeral muscular dystrophy. Clin Biomech (Bristol, Avon) 2014; 29
(08) 855-860
MissingFormLabel
- 22
Bisschop A,
van Royen BJ,
Mullender MG.
et al.
Which factors prognosticate spinal instability following lumbar laminectomy?. Eur
Spine J 2012; 21 (12) 2640-2648
MissingFormLabel
- 23
Sabnis AB,
Chamoli U,
Diwan AD.
Is L5-S1 motion segment different from the rest? A radiographic kinematic assessment
of 72 patients with chronic low back pain. Eur Spine J 2018; 27 (05) 1127-1135
MissingFormLabel
- 24
Koo TK,
Kwok WE.
A non-ionizing technique for three-dimensional measurement of the lumbar spine. J
Biomech 2016; 49 (16) 4073-4079
MissingFormLabel
- 25
Daffner SD,
Xin J,
Taghavi CE.
et al.
Cervical segmental motion at levels adjacent to disc herniation as determined with
kinetic magnetic resonance imaging. Spine 2009; 34 (22) 2389-2394
MissingFormLabel
- 26
Rogers BP,
Haughton VM,
Arfanakis K,
Meyerand ME.
Application of image registration to measurement of intervertebral rotation in the
lumbar spine. Magn Reson Med 2002; 48 (06) 1072-1075
MissingFormLabel
- 27
Mahato NK,
Montuelle S,
Cotton J,
Williams S,
Thomas J,
Clark B.
Development of a morphology-based modeling technique for tracking solid-body displacements:
examining the reliability of a potential MRI-only approach for joint kinematics assessment.
BMC Med Imaging 2016; 16 (01) 38
MissingFormLabel
- 28
Bessho T,
Hayashi T,
Shibukawa S,
Kourin K,
Shouda T.
Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid
flow MR imaging. Radiol Phys Technol 2024; 17 (03) 782-792
MissingFormLabel