Subscribe to RSS
DOI: 10.1055/s-0044-1790257
Transforming Education in Orthopedic and Trauma Surgery: Integration of Extended Reality
Article in several languages: español | EnglishLa integración de tecnologías de Realidad Extendida (XR, por sus siglas en inglés), que abarca la Realidad Virtual (VR), Realidad Aumentada (AR) y Realidad Mixta (MR), ha comenzado a transformar de manera significativa la educación médica. Estas tecnologías están revolucionando la forma en que se forman y entrenan los futuros cirujanos, ofreciendo experiencias de aprendizaje inmersivas que antes eran impensables.
Publication History
Article published online:
25 September 2024
© 2024. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referencias
- 1 Buja LM. Medical education today: all that glitters is not gold. BMC Med Educ 2019; 19 (01) 110
- 2 Palés JL, Rodríguez De Castro F. Desarrollo Profesional Continuo (DPC) y Regulación de La Profesión Médica Retos de La Formación Médica de Grado. Vol 9. 2006
- 3 Swanwick T, Forrest K, O'Brien B. Understanding Medical Education. (Swanwick T, Forrest K, O'Brien BC, eds.). Wiley; 2018.
- 4 James HK, Pattison GTR, Griffin DR, Fisher JD. How Does Cadaveric Simulation Influence Learning in Orthopedic Residents?. J Surg Educ 2020; 77 (03) 671-682
- 5 Kotsis SV, Chung KC. Application of the “see one, do one, teach one” concept in surgical training. Plast Reconstr Surg 2013; 131 (05) 1194-1201
- 6 Farra SL, Gneuhs M, Hodgson E. et al. Comparative Cost of Virtual Reality Training and Live Exercises for Training Hospital Workers for Evacuation. Comput Inform Nurs 2019; 37 (09) 446-454
- 7 Mao RQ, Lan L, Kay J. et al. Immersive Virtual Reality for Surgical Training: A Systematic Review. J Surg Res 2021; 268: 40-58
- 8 Cai S, Chiang FK, Sun Y, Lin C, Lee JJ. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact Learn Environ 2017; 25 (06) 778-791
- 9 Carbonell Carrera C, Bermejo Asensio LA. Augmented reality as a digital teaching environment to develop spatial thinking. Cartogr Geogr Inf Sci 2017; 44 (03) 259-270
- 10 Ikhsan J, Sugiyarto KH, Astuti TN. Fostering student's critical thinking through a virtual reality laboratory. Int J Interactive Mobile Technol 2020; 14 (08) 183-195
- 11 Bowman DA, Sowndararajan A, Ragan ED, Kopper R. Higher levels of immersion improve procedure memorization performance. In: Proceedings of the Joint Virtual Reality Conference of EGVE - The 15th Eurographics Symposium on Virtual Environments, ICAT, EuroVR 2009. Eurographics Association; 2009: 121-128
- 12 Pastel S, Petri K, Chen CH. et al. Training in virtual reality enables learning of a complex sports movement. Virtual Real (Walth Cross) 2023; 27 (02) 523-540
- 13 Richlan F, Weiß M, Kastner P, Braid J. Virtual training, real effects: a narrative review on sports performance enhancement through interventions in virtual reality. Front Psychol 2023; 14: 1240790
- 14 Fahl JT, Duvivier R, Reinke L, Pierie JEN, Schönrock-Adema J. Towards best practice in developing motor skills: a systematic review on spacing in VR simulator-based psychomotor training for surgical novices. BMC Med Educ 2023; 23 (01) 154
- 15 Moro C, Štromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ 2017; 10 (06) 549-559
- 16 Yoon SA, Elinich K, Wang J, Steinmeier C, Tucker S. Using augmented reality and knowledge-building scaffolds to improve learning in a science museum. Int J Computer-Supported Collab Learn 2012; 7 (04) 519-541
- 17 Banaszek D, You D, Chang J. et al. Virtual reality compared with bench-top simulation in the acquisition of arthroscopic skill: A randomized controlled trial. J Bone Joint Surg Am 2017; 99 (07) e34
- 18 Clarke E. Virtual reality simulation-the future of orthopaedic training? A systematic review and narrative analysis. Adv Simul (Lond) 2021; 6 (01) 2
- 19 Kuhn AW, Yu JK, Gerull KM, Silverman RM, Aleem AW. Virtual Reality and Surgical Simulation Training for Orthopaedic Surgery Residents: A Qualitative Assessment of Trainee Perspectives. JBJS Open Access 2024; 9 (01) e23.00142
- 20 Stirling ERB, Lewis TL, Ferran NA. Surgical skills simulation in trauma and orthopaedic training. J Orthop Surg Res 2014; 9: 126
- 21 Azher S, Mills A, He J. et al. Findings Favor Haptics Feedback in Virtual Simulation Surgical Education: An Updated Systematic and Scoping Review. Surg Innov 2024; 31 (03) 331-341
- 22 Gani A, Pickering O, Ellis C, Sabri O, Pucher P. Impact of haptic feedback on surgical training outcomes: A Randomised Controlled Trial of haptic versus non-haptic immersive virtual reality training. Ann Med Surg (Lond) 2022; 83: 104734
- 23 What is Moore's Law? - Our World in Data. Accessed August 27, 2023. https://ourworldindata.org/moores-law
- 24 Herur-Raman A, Almeida ND, Greenleaf W, Williams D, Karshenas A, Sherman JH. Next-Generation Simulation—Integrating Extended Reality Technology Into Medical Education. Front Virtual Real 2021; 2