RSS-Feed abonnieren

DOI: 10.1055/s-0044-1789589
Role of Dysregulated Immune Biomarkers in Hepatocellular Carcinoma Metastasis: A Systematic Meta-Analysis Review

Abstract


The liver plays a crucial role in immune system regulation, but dysregulation of immunological networks contributes to chronic liver diseases like hepatocellular carcinoma. This malignant tumor is the third leading cause of cancer death. An imbalanced immune system, characterized by alterations in immune cell count, cytokine levels, and inhibitory receptors, can impact metastasis by suppressing the immune system's ability to fight cancer cells. This study aims to investigate the potential biomarkers playing a crucial role in immune dysregulation resulting in hepatocellular carcinoma metastasis. A comprehensive and systematic literature review was conducted using both free words and search terms. The data extraction was then performed by a thorough literature screening. Next, the meta-analysis was performed using the metabin function of the meta library in R to evaluate the patient cases reporting metastasis in the event group. A total of 1,008 cases were considered, with 357 as events and 651 as nonevents. The results of the meta-analysis demonstrated the significant role of biomarkers in immune dysregulation causing metastasis (risk ratio = 0.54, 95% confidence interval: 0.4972, 0.6048, I 2 = 92.4%, p < 0.01). In addition to the immune dysregulation explored in this study, the impact of tumor size on hepatocellular carcinoma progression and metastasis is a crucial consideration. A notable difference of 41 more cases was reported for larger tumor sizes. The study integrates immune dysregulation biomarkers and tumor size factors influencing hepatocellular carcinoma metastasis, offering valuable insights for future research and therapeutic interventions for improved clinical outcomes.
Keywords
metastasis - hepatocellular carcinoma - dysregulated gene - immune response to cancer - cancer biomarkerAvailability of Data and Materials
All data throughout the manuscript are available in manuscript body and [Supplementary Material] (available in online version only).
Publikationsverlauf
Eingereicht: 15. Mai 2024
Angenommen: 26. Juli 2024
Artikel online veröffentlicht:
26. August 2024
© 2024. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Taibi C, Vincenzi L, D'Offizi G. Role of the immune system in hepatocellular carcinoma. In: Ettorre GM. ed. Hepatocellular Carcinoma [Internet]. Cham:: Springer International Publishing;; 2023: 19-26
- 2 Øie CI, Wolfson DL, Yasunori T. et al. Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10 (01) 898
- 3 Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19 (03) 222-232
- 4 Cho HJ, Cheong JY. Role of immune cells in patients with hepatitis B virus-related hepatocellular carcinoma. Int J Mol Sci 2021; 22 (15) 8011
- 5 Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2 (01) 6
- 6 Hatziapostolou M, Polytarchou C, Aggelidou E. et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011; 147 (06) 1233-1247
- 7 Mínguez B, Hoshida Y, Villanueva A. et al. Gene-expression signature of vascular invasion in hepatocellular carcinoma. J Hepatol 2011; 55 (06) 1325-1331
- 8 Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007; 27 (01) 55-76
- 9 Poon D, Anderson BO, Chen LT. et al; Asian Oncology Summit. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009; 10 (11) 1111-1118
- 10 Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53 (02) 348-356
- 11 Aravalli RN, Steer CJ, Cressman ENK. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008; 48 (06) 2047-2063
- 12 Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140 (06) 883-899
- 13 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331 (6024) 1565-1570
- 14 Aravalli RN. Role of innate immunity in the development of hepatocellular carcinoma. World J Gastroenterol 2013; 19 (43) 7500-7514
- 15 Sachdeva M, Chawla YK, Arora SK. Immunology of hepatocellular carcinoma. World J Hepatol 2015; 7 (17) 2080-2090
- 16 Xue D, Zheng Y, Wen J. et al. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45 (03) 809-823
- 17 Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17 (09) 559-572
- 18 Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 2006; 79 (04) 639-651
- 19 Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol 2015; 62 (06) 1420-1429
- 20 Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38 (01) 396
- 21 Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441 (7092) 431-436
- 22 Cabillic F, Corlu A. Regulation of transdifferentiation and retrodifferentiation by inflammatory cytokines in hepatocellular carcinoma. Gastroenterology 2016; 151 (04) 607-615
- 23 Frau M, Biasi F, Feo F, Pascale RM. Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol Aspects Med 2010; 31 (02) 179-193
- 24 Silva MF, Sherman M. Criteria for liver transplantation for HCC: what should the limits be?. J Hepatol 2011; 55 (05) 1137-1147
- 25 Li J, Lau G, Chen L. et al. Interleukin 23 promotes hepatocellular carcinoma metastasis via NF-kappa B induced matrix metalloproteinase 9 expression. PLoS One 2012; 7 (09) e46264
- 26 Li XP, Yang XY, Biskup E. et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget 2015; 6 (26) 22880-22889
- 27 Xue TC, Chen RX, Ren ZG, Zou JH, Tang ZY, Ye SL. Transmembrane receptor CXCR7 increases the risk of extrahepatic metastasis of relatively well-differentiated hepatocellular carcinoma through upregulation of osteopontin. Oncol Rep 2013; 30 (01) 105-110
- 28 Li B, Su H, Cao J, Zhang L. CXCL13 rather than IL-31 is a potential indicator in patients with hepatocellular carcinoma. Cytokine 2017; 89: 91-97
- 29 Lan X, Xiao F, Ding Q. et al. The effect of CXCL9 on the invasion ability of hepatocellular carcinoma through up-regulation of PREX2. J Mol Histol 2014; 45 (06) 689-696
- 30 Yang P, Li QJ, Feng Y. et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22 (03) 291-303
- 31 Li Y, Wang C, Yin X, Jiang L, Li X, Yang J. Profile and clinical significance of interferon gamma-inducible protein-10 (IP-10) and its receptor in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149 (16) 14879-14888
- 32 Kang Y, Su G, Sun J, Zhang Y. Activation of the TLR4/MyD88 signaling pathway contributes to the development of human hepatocellular carcinoma via upregulation of IL-23 and IL-17A. Oncol Lett 2018; 15 (06) 9647-9654
- 33 Gao S, Chen T, Li L. et al. Hypoxia-inducible ubiquitin specific peptidase 13 contributes to tumor growth and metastasis via enhancing the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB pathway in hepatocellular carcinoma. Front Cell Dev Biol 2020; 8: 587389
- 34 Zhang Y, Song T, Meng L, Wu X, Ba Y, Li Q. Melanoma antigen-1 mRNA combined with α-fetoprotein mRNA levels in peripheral blood of patients with hepatocellular carcinoma: a predictor of postoperative recurrence or metastasis?. ANZ J Surg 2009; 79 (1-2): 62-69
- 35 Targe M, Yasam VR, Nagarkar R. Hepatocellular carcinoma with uncommon sites of metastasis: a rare case report. Egypt J Radiol Nucl Med 2021; 52 (01) 228
- 36 Kummar S, Shafi NQ. Metastatic hepatocellular carcinoma. Clin Oncol (R Coll Radiol) 2003; 15 (05) 288-294
- 37 Matsui M, Machida S, Itani-Yohda T, Akatsuka T. Downregulation of the proteasome subunits, transporter, and antigen presentation in hepatocellular carcinoma, and their restoration by interferon-γ. J Gastroenterol Hepatol 2002; 17 (08) 897-907
- 38 Chan IH, Jain R, Tessmer MS. et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol 2014; 7 (04) 842-856
- 39 Kirchberger S, Royston DJ, Boulard O. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 2013; 210 (05) 917-931
- 40 Liu Y, Song Y, Lin D. et al. NCR- group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 2019; 41: 333-344
- 41 Warner K, Ghaedi M, Chung DC, Jacquelot N, Ohashi PS. Innate lymphoid cells in early tumor development. Front Immunol 2022; 13: 948358
- 42 Wu T, Yang W, Sun A, Wei Z, Lin Q. The role of CXC chemokines in cancer progression. Cancers (Basel) 2022; 15 (01) 167
- 43 Zajkowska M, Mroczko B. Chemokines in primary liver cancer. Int J Mol Sci 2022; 23 (16) 8846
- 44 Yin Z, Huang J, Ma T. et al. Macrophages activating chemokine (C-X-C motif) ligand 8/miR-17 cluster modulate hepatocellular carcinoma cell growth and metastasis. Am J Transl Res 2017; 9 (05) 2403-2411
- 45 Yu X, Chen Y, Cui L. et al. CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front Microbiol 2022; 13: 1052917
- 46 Kazanietz MG, Durando M, Cooke M. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol (Lausanne) 2019; 10: 471
- 47 Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm 2022; 3 (02) e147
- 48 Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9 (01) 212
- 49 Zheng K, Li HY, Su XL. et al. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J Exp Clin Cancer Res 2010; 29 (01) 31
- 50 Zhu F, Li X, Chen S, Zeng Q, Zhao Y, Luo F. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol 2016; 33 (02) 17
- 51 Li X, Yang G, Zhang W. et al. USP13: multiple functions and target inhibition. Front Cell Dev Biol 2022; 10: 875124
- 52 Huang J, Gu ZL, Chen W, Xu YY, Chen M. Knockdown of ubiquitin-specific peptidase 13 inhibits cell growth of hepatocellular carcinoma by reducing c-Myc expression. Kaohsiung J Med Sci 2020; 36 (08) 615-621
- 53 Li R, Gong J, Xiao C. et al. A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma. Genomics 2020; 112 (06) 5101-5114
- 54 Liu C, Xiao GQ, Yan LN. et al. Value of α-fetoprotein in association with clinicopathological features of hepatocellular carcinoma. World J Gastroenterol 2013; 19 (11) 1811-1819
- 55 Yoo DJ, Kim KM, Jin YJ. et al. Clinical outcome of 251 patients with extrahepatic metastasis at initial diagnosis of hepatocellular carcinoma: does transarterial chemoembolization improve survival in these patients?. J Gastroenterol Hepatol 2011; 26 (01) 145-154
- 56 Jun L, Zhenlin Y, Renyan G. et al. Independent factors and predictive score for extrahepatic metastasis of hepatocellular carcinoma following curative hepatectomy. Oncologist 2012; 17 (07) 963-969
- 57 Dang Y, Chen J, Feng W, Qiao C. et al. Interleukin 1β-mediated HOXC10 overexpression promotes hepatocellular carcinoma metastasis by upregulating PDPK1 and VASP. Theranostics 2020; 10 (08) 3833