RSS-Feed abonnieren

DOI: 10.1055/s-0044-1788657
Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis
Revolucionando a doença de Alzheimer precoce e o diagnóstico de comprometimento cognitivo leve: uma metanálise de aprendizagem profunda por ressonância magnética
Abstract
Background The early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains a significant challenge in neurology, with conventional methods often limited by subjectivity and variability in interpretation. Integrating deep learning with artificial intelligence (AI) in magnetic resonance imaging (MRI) analysis emerges as a transformative approach, offering the potential for unbiased, highly accurate diagnostic insights.
Objective A meta-analysis was designed to analyze the diagnostic accuracy of deep learning of MRI images on AD and MCI models.
Methods A meta-analysis was performed across PubMed, Embase, and Cochrane library databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, focusing on the diagnostic accuracy of deep learning. Subsequently, methodological quality was assessed using the QUADAS-2 checklist. Diagnostic measures, including sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the receiver operating characteristic curve (AUROC) were analyzed, alongside subgroup analyses for T1-weighted and non-T1-weighted MRI.
Results A total of 18 eligible studies were identified. The Spearman correlation coefficient was -0.6506. Meta-analysis showed that the combined sensitivity and specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.84, 0.86, 6.0, 0.19, and 32, respectively. The AUROC was 0.92. The quiescent point of hierarchical summary of receiver operating characteristic (HSROC) was 3.463. Notably, the images of 12 studies were acquired by T1-weighted MRI alone, and those of the other 6 were gathered by non-T1-weighted MRI alone.
Conclusion Overall, deep learning of MRI for the diagnosis of AD and MCI showed good sensitivity and specificity and contributed to improving diagnostic accuracy.
Resumo
Antecedentes O diagnóstico precoce da doença de Alzheimer (DA) e do comprometimento cognitivo leve (CCL) continua sendo um desafio significativo na neurologia, com métodos convencionais frequentemente limitados pela subjetividade e variabilidade na interpretação. A integração da aprendizagem profunda com a inteligência artificial (IA) na análise de imagens de ressonância magnética surge como uma abordagem transformadora, oferecendo o potencial para insights diagnósticos imparciais e altamente precisos.
Objetivo Uma metanálise foi projetada para analisar a precisão diagnóstica do aprendizado profundo de imagens de ressonância magnética em modelos de DA e CCL.
Métodos Uma metanálise foi realizada nos bancos de dados das bibliotecas PubMed, Embase e Cochrane seguindo as diretrizes Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), com foco na precisão diagnóstica do aprendizado profundo. Posteriormente, a qualidade metodológica foi avaliada por meio do checklist QUADAS-2. Medidas diagnósticas, incluindo sensibilidade, especificidade, razões de verossimilhança, razão de chances diagnósticas e área sob a curva característica de operação do receptor (area under the receiver operating characteristic curve [AUROC]) foram analisadas, juntamente com análises de subgrupo para ressonância magnética ponderada em T1 e não ponderada em T1.
Resultados Um total de 18 estudos elegíveis foram identificados. O coeficiente de correlação de Spearman foi de -0,6506. A metanálise mostrou que a sensibilidade e a especificidade combinadas, a razão de verossimilhança positiva, a razão de verossimilhança negativa e a razão de chances de diagnóstico foram 0,84, 0,86, 6,0, 0,19 e 32, respectivamente. A AUROC foi de 0,92. O ponto quiescente do resumo hierárquico da característica de operação do receptor (hierarchical summary of receiver operating characteristic [HSROC]) foi 3,463. Notavelmente, as imagens de 12 estudos foram adquiridas apenas por ressonância magnética ponderada em T1, e as dos outros 6 foram obtidas apenas por ressonância magnética não ponderada em T1.
Conclusão Em geral, a aprendizagem profunda da ressonância magnética para o diagnóstico de DA e CCL mostrou boa sensibilidade e especificidade e contribuiu para melhorar a precisão diagnóstica.
Keywords
Alzheimer Disease - Cognitive Dysfunction - Magnetic Resonance Imaging - Deep Learning - Meta-AnalysisPalavras-chave
Doença de Alzheimer - Disfunção Cognitiva - Imageamento por Ressonância Magnética - Aprendizado Profundo - MetanáliseAuthors' Contributions
LXW, JL: conceived and designed the study, conducted the study, edited the manuscript draft; YZW, CGH: contributed to data acquisition; CGH, LZ: analyzed the data; YZH, LZ: interpreted the data; XW, JL: reviewed and edited the manuscript. All authors have read and approved the manuscript.
Publikationsverlauf
Eingereicht: 22. Februar 2024
Angenommen: 06. Mai 2024
Artikel online veröffentlicht:
15. August 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Li-xue Wang, Yi-zhe Wang, Chen-guang Han, Lei Zhao, Li He, Jie Li. Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis. Arq Neuropsiquiatr 2024; 82: s00441788657.
DOI: 10.1055/s-0044-1788657
-
References
- 1 Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73: 101529
- 2 Xia P, Chen J, Liu Y. et al. MicroRNA-22-3p ameliorates Alzheimer's disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J Neuroinflammation 2022; 19 (01) 180
- 3 Klyucherev TO, Olszewski P, Shalimova AA. et al. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11 (01) 25
- 4 Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review. BMB Rep 2020; 53 (01) 10-19
- 5 Fonte C, Smania N, Pedrinolla A. et al. Comparison between physical and cognitive treatment in patients with MCI and Alzheimer's disease. Aging (Albany NY) 2019; 11 (10) 3138-3155
- 6 Livingston G, Huntley J, Sommerlad A. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396 (10248): 413-446
- 7 Yin RH, Tan L, Liu Y. et al. Multimodal Voxel-Based Meta-Analysis of White Matter Abnormalities in Alzheimer's Disease. J Alzheimers Dis 2015; 47 (02) 495-507
- 8 Talwar P, Kushwaha S, Chaturvedi M, Mahajan V. Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer's Disease. Clin Neuroradiol 2021; 31 (04) 953-967
- 9 Zhou Y, Song Z, Han X, Li H, Tang X. Prediction of Alzheimer's Disease Progression Based on Magnetic Resonance Imaging. ACS Chem Neurosci 2021; 12 (22) 4209-4223
- 10 Grajauskas LA, Guo H, D'Arcy RCN, Song X. Toward MRI-based whole-brain health assessment: The brain atrophy and lesion index (BALI). Aging Med (Milton) 2018; 1 (01) 55-63 . 10.1002%2Fagm2.12014
- 11 Frizzell TO, Glashutter M, Liu CC. et al. Artificial intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: A systematic review. Ageing Res Rev 2022; 77: 101614
- 12 Adarsh V, Gangadharan GR, Fiore U, Zanetti P. Multimodal classification of Alzheimer's disease and mild cognitive impairment using custom MKSCDDL kernel over CNN with transparent decision-making for explainable diagnosis. Sci Rep 2024; 14 (01) 1774
- 13 Aggarwal R, Sounderajah V, Martin G. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 2021; 4 (01) 65
- 14 Suk HI, Lee SW, Shen D. Alzheimer's Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 2014; 101: 569-582 . 10.1016%2Fj.neuroimage.2014.06.077
- 15 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151 (04) 264-269
- 16 Zheng X, He B, Hu Y. et al. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10: 938113
- 17 Agarwal D, Berbís MA, Luna A, Lipari V, Ballester JB, de la Torre-Díez I. Automated Medical Diagnosis of Alzheimeŕs Disease Using an Efficient Net Convolutional Neural Network. J Med Syst 2023; 47 (01) 57
- 18 Agarwal D, Berbis MA, Martín-Noguerol T, Luna A, Garcia SCP, de la Torre-Díez I. End-to-End Deep Learning Architectures Using 3D Neuroimaging Biomarkers for Early Alzheimer's Diagnosis. Mathematics 2022; 10 (15) 2575
- 19 Akramifard H, Balafar MA, Razavi SN, Ramli AR. Early Detection of Alzheimer's Disease Based on Clinical Trials, Three-Dimensional Imaging Data, and Personal Information Using Autoencoders. J Med Signals Sens 2021; 11 (02) 120-130
- 20 Basaia S, Agosta F, Wagner L. et al; Alzheimer's Disease Neuroimaging Initiative. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin 2019; 21: 101645
- 21 Chen X, Tang M, Liu A, Wei X. Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI. Ann Transl Med 2022; 10 (14) 765
- 22 Feng W, Halm-Lutterodt NV, Tang H. et al. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Int J Neural Syst 2020; 30 (06) 2050032
- 23 Gao L, Hu Z, Li R. et al. Multi-Perspective Feature Extraction and Fusion Based on Deep Latent Space for Diagnosis of Alzheimer's Diseases. Brain Sci 2022; 12 (10) 1348
- 24 Hedayati R, Khedmati M, Taghipour-Gorjikolaie M. Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer's disease diagnosis. Biomed Signal Process Control 2021; 66 (03) 102397
- 25 Kang W, Lin L, Zhang B, Shen X, Wu S. Alzheimer's Disease Neuroimaging Initiative. Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis. Comput Biol Med 2021; 136: 104678
- 26 Li H. Attention-based and micro designed EfficientNetB2 for diagnosis of Alzheimer's disease. Biomed Signal Process Control 2023; 82: 104571
- 27 Mehmood A, Yang S, Feng Z. et al. A Transfer Learning Approach for Early Diagnosis of Alzheimer's Disease on MRI Images. Neuroscience 2021; 460: 43-52
- 28 Oh K, Chung YC, Kim KW, Kim WS, Oh IS. Classification and Visualization of Alzheimer's Disease using Volumetric Convolutional Neural Network and Transfer Learning. Sci Rep 2019; 9 (01) 18150
- 29 Suh CH, Shim WH, Kim SJ. et al; Alzheimer's Disease Neuroimaging Initiative. Development and Validation of a Deep Learning-Based Automatic Brain Segmentation and Classification Algorithm for Alzheimer Disease Using 3D T1-Weighted Volumetric Images. AJNR Am J Neuroradiol 2020; 41 (12) 2227-2234
- 30 Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer's Disease Using Ensemble of Deep Neural Networks Trained Through Transfer Learning. IEEE J Biomed Health Inform 2022; 26 (04) 1453-1463
- 31 Wee CY, Liu C, Lee A, Poh JS, Ji H, Qiu A. Alzheimers Disease Neuroimage Initiative. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. Neuroimage Clin 2019; 23: 101929
- 32 Burke AD, Goldfarb D. Diagnosing and Treating Alzheimer Disease During the Early Stage. J Clin Psychiatry 2023; 84 (02) LI21019AH3C
- 33 Yu Q, Mai Y, Ruan Y. et al; National Alzheimer's Coordinating Center, the Alzheimer's Disease Neuroimaging Initiative, Frontotemporal Lobar Degeneration Neuroimaging Initiative. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer's disease. Alzheimers Res Ther 2021; 13 (01) 23
- 34 Verma RK, Pandey M, Chawla P. et al. An Insight into the Role of Artificial Intelligence in the Early Diagnosis of Alzheimer's Disease. CNS Neurol Disord Drug Targets 2022; 21 (10) 901-912
- 35 Al Shehri W. Alzheimer's disease diagnosis and classification using deep learning techniques. PeerJ Comput Sci 2022; 8: e1177 . 10.7717%2Fpeerj-cs.1177
- 36 Jo T, Nho K, Saykin AJ. Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front Aging Neurosci 2019; 11: 220
- 37 Spasov S, Passamonti L, Duggento A, Liò P, Toschi N. Alzheimer's Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Neuroimage 2019; 189: 276-287
- 38 Song J, Hahm J, Lee J. et al. Comparative validation of AI and non-AI methods in MRI volumetry to diagnose Parkinsonian syndromes. Sci Rep 2023; 13 (01) 3439
- 39 Nazer LH, Zatarah R, Waldrip S. et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health 2023; 2 (06) e0000278 . 10.1371%2Fjournal.pdig.0000278
- 40 Fathi S, Ahmadi A, Dehnad A, Almasi-Dooghaee M, Sadegh M. Alzheimer's Disease Neuroimaging Initiative. A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images. Neuroinformatics 2024; 22 (01) 89-105
- 41 Vasiliuk A, Frolova D, Belyaev M, Shirokikh B. Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation. J Imaging 2023; 9 (09) 191
- 42 Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J Radiol 2019; 20 (03) 405-410
- 43 Steyerberg EW, Moons KG, van der Windt DA. et al; PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013; 10 (02) e1001381
- 44 Liu X, Faes L, Kale AU. et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019; 1 (06) e271-e297