Semin Plast Surg
DOI: 10.1055/s-0044-1786757
Review Article

Computerized Surgical Planning for Mandibular Distraction Osteogenesis

Kevin G. Hu*
1   Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
,
Ali Aral*
1   Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
,
Albert Rancu
1   Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
,
Michael Alperovich
1   Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
› Institutsangaben
Funding Dr. Alperovich receives funding from CTSA (grant number: KL2 TR001862) from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH),and consults for Johnson & Johnson and LifeNet Health. The manuscript contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Abstract

Mandibular distraction osteogenesis is a technically challenging procedure due to complex mandibular anatomy, especially in the treatment of Pierre-Robin Sequence due to variable bone thickness in the infant mandible and the presence of tooth buds. Computerized surgical planning (CSP) simplifies the procedure by preoperatively visualizing critical structures, producing cutting guides, and planning distractor placement. This paper describes the process of using CSP to plan mandibular distraction osteogenesis, including discussion of recent advances in the use of custom distractors.

* Both authors contributed equally as co-first authors.




Publikationsverlauf

Artikel online veröffentlicht:
13. Mai 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Almeida MN, Alper DP, Williams MCG. et al. Virtual surgical planning in craniosynostosis reduces operative time and length of stay for cranial vault remodeling. J Craniofac Surg 2023; 34 (07) 1931-1933
  • 2 Andrew TW, Baylan J, Mittermiller PA. et al. Virtual surgical planning decreases operative time for isolated single suture and multi-suture craniosynostosis repair. Plast Reconstr Surg Glob Open 2018; 6 (12) e2038
  • 3 Mazzola F, Smithers F, Cheng K. et al. Time and cost-analysis of virtual surgical planning for head and neck reconstruction: a matched pair analysis. Oral Oncol 2020; 100: 104491
  • 4 May MM, Howe BM, O'Byrne TJ. et al. Short and long-term outcomes of three-dimensional printed surgical guides and virtual surgical planning versus conventional methods for fibula free flap reconstruction of the mandible: decreased nonunion and complication rates. Head Neck 2021; 43 (08) 2342-2352
  • 5 Pfaff MJ, De Leon F, Le L. et al. Long-term orthognathic considerations in the Pierre Robin sequence patient. Plast Reconstr Surg 2020; 146 (05) 599e-606e
  • 6 Wenger TL, Perkins J, Parish-Morris J. et al. Cleft palate morphology, genetic etiology, and risk of mortality in infants with Robin sequence. Am J Med Genet A 2021; 185 (12) 3694-3700
  • 7 Wright MF, Knowles RL, Cortina-Borja M, Javadpour S, Mehendale FV, Urquhart DS. Epidemiology of Robin sequence in the UK and Ireland: an active surveillance study. Arch Dis Child 2023; 108 (09) 748-753
  • 8 Wright M, Cortina-Borja M, Knowles R, Urquhart DS. Global birth prevalence of Robin sequence in live-born infants: a systematic review and meta-analysis. Eur Respir Rev 2023; 32 (170) 230133
  • 9 Paes EC, van Nunen DP, Basart H. et al. Birth prevalence of Robin sequence in the Netherlands from 2000-2010: a retrospective population-based study in a large Dutch cohort and review of the literature. Am J Med Genet A 2015; 167A (09) 1972-1982
  • 10 Stoll C, Alembick Y, Roth MP. Associated anomalies in Pierre Robin sequence. Am J Med Genet A 2023; 191 (09) 2312-2323
  • 11 Bakeman AE, Shaffer AD, Tobey ABJ. et al. Prevalence and management of laryngomalacia in patients with Pierre Robin sequence. Cleft Palate Craniofac J 2023; 60 (11) 1395-1403
  • 12 Resnick CM, Calabrese CE, Sahdev R, Padwa BL. Is tongue-lip adhesion or mandibular distraction more effective in relieving obstructive apnea in infants with Robin sequence?. J Oral Maxillofac Surg 2019; 77 (03) 591-600
  • 13 Zaballa K, Singh J, Waters K. The management of upper airway obstruction in Pierre Robin Sequence. Paediatr Respir Rev 2023; 45: 11-15
  • 14 Anderson IC, Sedaghat AR, McGinley BM, Redett RJ, Boss EF, Ishman SL. Prevalence and severity of obstructive sleep apnea and snoring in infants with Pierre Robin sequence. Cleft Palate Craniofac J 2011; 48 (05) 614-618
  • 15 Lee JJ, Thottam PJ, Ford MD, Jabbour N. Characteristics of sleep apnea in infants with Pierre-Robin sequence: is there improvement with advancing age?. Int J Pediatr Otorhinolaryngol 2015; 79 (12) 2059-2067
  • 16 Semensato MM, Trindade SHK, Marzano-Rodrigues MN, Scomparin L, Trindade-Suedam I. Screening for obstructive sleep apnea and associated risk factors in adolescents and adults with isolated Robin sequence. Cleft Palate Craniofac J 2024; 61 (01) 79-86
  • 17 Wiechers C, Uhlig S, Poets A. et al. Sleep and neurocognitive outcome in primary school children with Robin Sequence. Sleep 2023; 46 (05) zsac317
  • 18 Kukkola HK, Vuola P, Seppä-Moilanen M, Salminen P, Kirjavainen T. Pierre Robin sequence causes position-dependent obstructive sleep apnoea in infants. Arch Dis Child 2021; 106 (10) 954-960
  • 19 Broucqsault H, Lamblin MD, Hosana G, Fayoux P. Evaluation of the efficacy of tongue-lip adhesion in Pierre Robin sequence. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135 (03) 155-158
  • 20 Spicuzza L, Leonardi S, La Rosa M. Pediatric sleep apnea: early onset of the “syndrome”?. Sleep Med Rev 2009; 13 (02) 111-122
  • 21 Randall P. The Robin anomalad: micrognathia and glossoptosis with air way obstruction. In: Converse JM. ed. Reconstructive Plastic Surgery. Philadelphia: WB Saunders; 1977: 2235-2245
  • 22 Freitas RDS, do Prado D, Guarezi Nasser IJ, Peressutti C, Ogawa VS. Pierre Robin sequence and respiratory distress: long-term evolution in patients submitted to the conservative treatment. J Craniofac Surg 2023; 34 (04) 1267-1270
  • 23 Khansa I, Hall C, Madhoun LL. et al. Airway and feeding outcomes of mandibular distraction, tongue-lip adhesion, and conservative management in Pierre Robin sequence: a prospective study. Plast Reconstr Surg 2017; 139 (04) 975e-983e
  • 24 Zhang RS, Hoppe IC, Taylor JA, Bartlett SP. Surgical management and outcomes of Pierre Robin sequence: a comparison of mandibular distraction osteogenesis and tongue-lip adhesion. Plast Reconstr Surg 2018; 142 (02) 480-509
  • 25 Suri S, Ross RB, Tompson BD. Craniofacial morphology and adolescent facial growth in Pierre Robin sequence. Am J Orthod Dentofacial Orthop 2010; 137 (06) 763-774
  • 26 Ozawa TO, Lorenzoni DC, de Oliveira LG, da Silva Filho OG. Facial profile evaluation of isolated Pierre Robin sequence. Cleft Palate Craniofac J 2012; 49 (05) 546-552
  • 27 Daskalogiannakis J, Ross RB, Tompson BD. The mandibular catch-up growth controversy in Pierre Robin sequence. Am J Orthod Dentofacial Orthop 2001; 120 (03) 280-285
  • 28 Purnell CA, Janes LE, Klosowiak JL, Gosain AK. Mandibular catch-up growth in Pierre Robin sequence: a systematic review. Cleft Palate Craniofac J 2019; 56 (02) 168-176
  • 29 Krimmel M, Kluba S, Breidt M. et al. Three-dimensional assessment of facial development in children with Pierre Robin sequence. J Craniofac Surg 2009; 20 (06) 2055-2060
  • 30 McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 1992; 89 (01) 1-8 , discussion 9–10
  • 31 Gateño J, Teichgraeber JF, Aguilar E. Distraction osteogenesis: a new surgical technique for use with the multiplanar mandibular distractor. Plast Reconstr Surg 2000; 105 (03) 883-888
  • 32 Katzen JT, Holliday RA, McCarthy JG. Imaging the neonatal mandible for accurate distraction osteogenesis. J Craniofac Surg 2001; 12 (01) 26-30
  • 33 Li B, Sun H, Zeng F, Zhang T, Wang X. Accuracy of a CAD/CAM surgical template for mandibular distraction: a preliminary study. Br J Oral Maxillofac Surg 2018; 56 (09) 814-819
  • 34 Chen K, Xiao D, Abotaleb B, Chen H, Li Y, Zhu S. Accuracy of virtual surgical planning in treatment of temporomandibular joint ankylosis using distraction osteogenesis: comparison of planned and actual results. J Oral Maxillofac Surg 2018; 76 (11) 2422.e1-2422.e20
  • 35 Vanesa V, Irene MP, Marta AS. et al. Accuracy of virtually planned mandibular distraction in a pediatric case series. J Craniomaxillofac Surg 2021; 49 (02) 154-165
  • 36 Tan A, Chai Y, Mooi W. et al. Computer-assisted surgery in therapeutic strategy distraction osteogenesis of hemifacial microsomia: accuracy and predictability. J Craniomaxillofac Surg 2019; 47 (02) 204-218
  • 37 Resnick CM. Precise osteotomies for mandibular distraction in infants with Robin sequence using virtual surgical planning. Int J Oral Maxillofac Implants 2018; 47 (01) 35-43
  • 38 Doscher ME, Garfein ES, Bent J, Tepper OM. Neonatal mandibular distraction osteogenesis: converting virtual surgical planning into an operative reality. Int J Pediatr Otorhinolaryngol 2014; 78 (02) 381-384
  • 39 Day KM, Gabrick KS, Sargent LA. Applications of computer technology in complex craniofacial reconstruction. Plast Reconstr Surg Glob Open 2018; 6 (03) e1655
  • 40 Yu H, Wang B, Wang M, Wang X, Shen SG. Computer-assisted distraction osteogenesis in the treatment of hemifacial microsomia. J Craniofac Surg 2016; 27 (06) 1539-1542
  • 41 Robiony M, Salvo I, Costa F. et al. Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 2007; 65 (06) 1198-1208
  • 42 Yang WF, Su YX. Artificial intelligence-enabled automatic segmentation of skull CT facilitates computer-assisted craniomaxillofacial surgery. Oral Oncol 2021; 118: 105360
  • 43 Kim BS, Zhang Z, Sun M. et al. Feasibility of a robot-assisted surgical navigation system for mandibular distraction osteogenesis in hemifacial microsomia: a model experiment. J Craniofac Surg 2023; 34 (02) 525-531
  • 44 Zhang Z, Kim BS, Han W. et al. Preliminary study of the accuracy and safety of robot-assisted mandibular distraction osteogenesis with electromagnetic navigation in hemifacial microsomia using rabbit models. Sci Rep 2022; 12 (01) 19572
  • 45 Qiu X, Han W, Dai L. et al. Assessment of an artificial intelligence mandibular osteotomy design system: a retrospective study. Aesthetic Plast Surg 2022; 46 (03) 1303-1313
  • 46 Steinberg JP, Brady CM, Waters BR. et al. Mid-term dental and nerve-related complications of infant distraction for Robin sequence. Plast Reconstr Surg 2016; 138 (01) 82e-90e
  • 47 Kleine-Hakala M, Hukki J, Hurmerinta K. Effect of mandibular distraction osteogenesis on developing molars. Orthod Craniofac Res 2007; 10 (04) 196-202
  • 48 Cao J, Zhang S, Gupta A. et al. Sensory nerves affect bone regeneration in rabbit mandibular distraction osteogenesis. Int J Med Sci 2019; 16 (06) 831-837
  • 49 Zellner EG, Mhlaba JM, Reid RR, Steinbacher DM. Does mandibular distraction vector influence airway volumes and outcome?. J Oral Maxillofac Surg 2017; 75 (01) 167-177
  • 50 Flores RL. Neonatal mandibular distraction osteogenesis. Semin Plast Surg 2014; 28 (04) 199-206
  • 51 Andrews BT, Fan KL, Roostaeian J, Federico C, Bradley JP. Incidence of concomitant airway anomalies when using the university of California, Los Angeles, protocol for neonatal mandibular distraction. Plast Reconstr Surg 2013; 131 (05) 1116-1123
  • 52 Ramly EP, Yu JW, Eisemann BS. et al. Temporomandibular joint ankylosis in pediatric patients with craniofacial differences: causes, recurrence and clinical outcomes. J Craniofac Surg 2020; 31 (05) 1343-1347
  • 53 Avinoam S, Shetye PR. Craniofacial distraction: orthodontic considerations. Clin Plast Surg 2021; 48 (03) 531-541
  • 54 Weichman KE, Jacobs J, Patel P. et al. Early distraction for mild to moderate unilateral craniofacial microsomia: long-term follow-up, outcomes, and recommendations. Plast Reconstr Surg 2017; 139 (04) 941e-953e
  • 55 Flores RL, Greathouse ST, Costa M, Tahiri Y, Soleimani T, Tholpady SS. Defining failure and its predictors in mandibular distraction for Robin sequence. J Craniomaxillofac Surg 2015; 43 (08) 1614-1619
  • 56 Breik O, Umapathysivam K, Tivey D, Anderson P. Feeding and reflux in children after mandibular distraction osteogenesis for micrognathia: a systematic review. Int J Pediatr Otorhinolaryngol 2016; 85: 128-135
  • 57 Shen C, Wang MM, Eisemann BT, Rodriguez AJ, Rickert SM, Flores RL. The surgical treatment of Robin sequence: neonatal mandibular distraction osteogenesis in the unfavorable patient. J Craniofac Surg 2021; 32 (07) 2326-2329
  • 58 Zhang RS, Lin LO, Hoppe IC, Bartlett SP, Taylor JA, Swanson JW. Risk factors for perioperative respiratory failure following mandibular distraction osteogenesis for micrognathia: a retrospective cohort study. Plast Reconstr Surg 2019; 143 (06) 1725-1736
  • 59 Cladis F, Kumar A, Grunwaldt L, Otteson T, Ford M, Losee JE. Pierre Robin Sequence: a perioperative review. Anesth Analg 2014; 119 (02) 400-412
  • 60 Krodel DJ, Belvis D, Suresh S. Inferior alveolar nerve blocks for postoperative pain control after mandibular distraction with osteotomies in a neonate. Paediatr Anaesth 2014; 24 (06) 635-637
  • 61 Otranto de Britto Teixeira A, Almeida MAO, Almeida RCDC. et al. Three-dimensional accuracy of virtual planning in orthognathic surgery. Am J Orthod Dentofacial Orthop 2020; 158 (05) 674-683
  • 62 Fatima A, Hackman TG, Wood JS. Cost-effectiveness analysis of virtual surgical planning in mandibular reconstruction. Plast Reconstr Surg 2019; 143 (04) 1185-1194