RSS-Feed abonnieren

DOI: 10.1055/s-0044-1786518
Characterization of an Estrogen Receptor α-Selective 18F-Estradiol PET Tracer
Autoren
Funding This work was supported, in part, by funds from the Eastern Health Foundation Linda Williams Memorial Oncology Research Grant (EHFRG2017_079), a Prostate Cancer Foundation of Australia New Directions Development Award (NDDA1311), the Operational Infrastructure Support Program provided by the Victorian Government, Australia, and the Australian Cancer Research Foundation. IDD was supported by an NHMRC Practitioner Fellowship (APP1102604). AMS is supported by an NHMRC Practitioner Fellowship (APP1084178) and Investigator Grant (APP1199837).
Abstract
Objective Conventional imaging of cancer with modalities such as computed tomography or magnetic resonance imaging provides little information about the underlying biology of the cancer and consequently little guidance for systemic treatment choices. Accurate identification of aggressive cancers or those that are likely to respond to specific treatment regimens would allow more precisely tailored treatments to be used. The expression of the estrogen receptor α subunit is associated with a more aggressive phenotype, with a greater propensity to metastasize. We aimed to characterize the binding properties of an 18F-estradiol positron emission tomography (PET) tracer in its ability to bind to the α and β forms of estrogen receptors in vitro and confirmed its binding to estrogen receptor α in vivo.
Methods The 18F-estradiol PET tracer was synthesized and its quality confirmed by high-performance liquid chromatography. Binding of the tracer was assessed in vitro by saturation and competitive binding studies to HEK293T cells transfected with estrogen receptor α (ESR1) and/or estrogen receptor β (ESR2). Binding of the tracer to estrogen receptor α in vivo was assessed by imaging of uptake of the tracer into MCF7 xenografts in BALB/c nu/nu mice.
Results The 18F-estradiol PET tracer bound with high affinity (94 nM) to estrogen receptor α, with negligible binding to estrogen receptor β. Uptake of the tracer was observed in MCF7 xenografts, which almost exclusively express estrogen receptor α.
Conclusion 18F-estradiol PET tracer binds in vitro with high specificity to the estrogen receptor α isoform, with minimal binding to estrogen receptor β. This may help distinguish human cancers with biological dependence on estrogen receptor subtypes.
Keywords
estrogen receptor α - estrogen receptor β - positron emission tomography - radiopharmaceuticals - competitive bindingPublikationsverlauf
Artikel online veröffentlicht:
18. Juni 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 DeSombre ER, Thorpe SM, Rose C. et al. Prognostic usefulness of estrogen receptor immunocytochemical assays for human breast cancer. Cancer Res 1986; 46 (8, suppl): 4256s-4264s
- 2 Blamey RW, Hornmark-Stenstam B, Ball G. et al. ONCOPOOL - a European database for 16,944 cases of breast cancer. Eur J Cancer 2010; 46 (01) 56-71
- 3 Davies C, Godwin J, Gray R. et al; Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378 (9793) 771-784
- 4 Barnes DM, Harris WH, Smith P, Millis RR, Rubens RD. Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer 1996; 74 (09) 1445-1451
- 5 Liao GJ, Clark AS, Schubert EK, Mankoff DA. 18F-fluoroestradiol PET: current status and potential future clinical applications. J Nucl Med 2016; 57 (08) 1269-1275
- 6 Katzenellenbogen JA. PET imaging agents (FES, FFNP, and FDHT) for estrogen, androgen, and progesterone receptors to improve management of breast and prostate cancers by functional imaging. Cancers (Basel) 2020; 12 (08) 2020
- 7 Katzenellenbogen JA. The quest for improving the management of breast cancer by functional imaging: the discovery and development of 16α-[18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 2021; 92: 24-37
- 8 Mintun MA, Welch MJ, Siegel BA. et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988; 169 (01) 45-48
- 9 Peterson LM, Mankoff DA, Lawton T. et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 2008; 49 (03) 367-374
- 10 Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999; 26 (01) 51-56
- 11 Gemignani ML, Patil S, Seshan VE. et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med 2013; 54 (10) 1697-1702
- 12 Lehr HA, Mankoff DA, Corwin D, Santeusanio G, Gown AM. Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J Histochem Cytochem 1997; 45 (11) 1559-1565
- 13 Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 1996; 2 (06) 933-939
- 14 Peterson LM, Kurland BF, Schubert EK. et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol 2014; 16 (03) 431-440
- 15 Denton M, Taubman K, Sutherland T. 18F-Fluoroestradiol PET in the evaluation of probable oligometastatic breast cancer. J Med Imaging Radiat Oncol 2020;
- 16 Chae SY, Ahn SH, Kim SB. et al. Diagnostic accuracy and safety of 16α-[18F]fluoro-17β-oestradiol PET-CT for the assessment of oestrogen receptor status in recurrent or metastatic lesions in patients with breast cancer: a prospective cohort study. Lancet Oncol 2019; 20 (04) 546-555
- 17 Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001; 19 (11) 2797-2803
- 18 He M, Liu C, Shi Q. et al. The predictive value of early changes in 18 F-fluoroestradiol positron emission tomography/computed tomography during fulvestrant 500 mg therapy in patients with estrogen receptor-positive metastatic breast cancer. Oncologist 2020; 25 (11) 927-936
- 19 Rezende LM, Marson FA, Lima CS, Bertuzzo CS. Variants of estrogen receptor alpha and beta genes modify the severity of sporadic breast cancer. Gene 2017; 608: 73-78
- 20 Ma L, Liu Y, Geng C, Qi X, Jiang J. Estrogen receptor β inhibits estradiol-induced proliferation and migration of MCF-7 cells through regulation of mitofusin 2. Int J Oncol 2013; 42 (06) 1993-2000
- 21 Mal R, Magner A, David J. et al. Estrogen receptor beta (ERβ): a ligand activated tumor suppressor. Front Oncol 2020; 10: 587386
- 22 Fox EM, Davis RJ, Shupnik MA. ERbeta in breast cancer–onlooker, passive player, or active protector?. Steroids 2008; 73 (11) 1039-1051
- 23 Bonkhoff H. Estrogen receptor signaling in prostate cancer: implications for carcinogenesis and tumor progression. Prostate 2018; 78 (01) 2-10
- 24 Tsujikawa T, Yoshida Y, Kiyono Y. et al. Functional oestrogen receptor α imaging in endometrial carcinoma using 16α-[18F]fluoro-17β-oestradiol PET. Eur J Nucl Med Mol Imaging 2011; 38 (01) 37-45
- 25 Paquette M, Ouellet R, Archambault M, Croteau É, Lecomte R, Bénard F. [18F]-fluoroestradiol quantitative PET imaging to differentiate ER+ and ERα-knockdown breast tumors in mice. Nucl Med Biol 2012; 39 (01) 57-64
- 26 Knott KE, Grätz D, Hübner S, Jüttler S, Zankl C, Müller M. Simplified and automatic one-pot synthesis of 16α-[18F]fluoroestradiol without high-performance liquid chromatography purification. J Labelled Comp Radiopharm 2011; 54 (12) 749-753
- 27 Lemaire C, Plenevaux A, Aerts J. et al. Solid phase extraction—an alternative to the use of rotary evaporators for solvent removal in the rapid formulation of PET radiopharmaceuticals. J Labelled Comp Radiopharm 1999; 42 (01) 63-75
- 28 Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ. Transrepression of estrogen receptor beta signaling by nuclear factor-kappab in ovarian granulosa cells. Mol Endocrinol 2004; 18 (08) 1919-1928
- 29 Sun J, Meyers MJ, Fink BE, Rajendran R, Katzenellenbogen JA, Katzenellenbogen BS. Novel ligands that function as selective estrogens or antiestrogens for estrogen receptor-alpha or estrogen receptor-beta. Endocrinology 1999; 140 (02) 800-804
- 30 Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR, Katzenellenbogen BS. Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma cells: distinct and common target genes for these receptors. Endocrinology 2004; 145 (07) 3473-3486
- 31 Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 2006; 147 (09) 4132-4150
- 32 Yoo J, Dence CS, Sharp TL, Katzenellenbogen JA, Welch MJ. Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha-[18F]fluoro-17beta-estradiol. J Med Chem 2005; 48 (20) 6366-6378
- 33 Kumar M, Salem K, Michel C, Jeffery JJ, Yan Y, Fowler AM. 18F-fluoroestradiol PET imaging of activating estrogen receptor-α mutations in breast cancer. J Nucl Med 2019; 60 (09) 1247-1252
- 34 Salem K, Kumar M, Powers GL. et al. 18F-16α-17β-fluoroestradiol binding specificity in estrogen receptor-positive breast cancer. Radiology 2018; 286 (03) 856-864
- 35 Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 2014; 90: 13-29
- 36 Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A 1998; 95 (11) 5998-6003
- 37 Linden HM, Stekhova SA, Link JM. et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 2006; 24 (18) 2793-2799
- 38 Dehdashti F, Mortimer JE, Trinkaus K. et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 2009; 113 (03) 509-517
- 39 Bergan RC, Reed E, Myers CE. et al. A phase II study of high-dose tamoxifen in patients with hormone-refractory prostate cancer. Clin Cancer Res 1999; 5 (09) 2366-2373
- 40 Stein S, Zoltick B, Peacock T. et al. Phase II trial of toremifene in androgen-independent prostate cancer: a Penn cancer clinical trials group trial. Am J Clin Oncol 2001; 24 (03) 283-285
- 41 Fujimura T, Takahashi S, Kume H. et al. Toremifene, a selective estrogen receptor modulator, significantly improved biochemical recurrence in bone metastatic prostate cancer: a randomized controlled phase II a trial. BMC Cancer 2015; 15: 836
- 42 Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol 2009; 55 (03) 533-542
- 43 Ball LJ, Levy N, Zhao X. et al. Cell type- and estrogen receptor-subtype specific regulation of selective estrogen receptor modulator regulatory elements. Mol Cell Endocrinol 2009; 299 (02) 204-211
- 44 Shazer RL, Jain A, Galkin AV. et al. Raloxifene, an oestrogen-receptor-beta-targeted therapy, inhibits androgen-independent prostate cancer growth: results from preclinical studies and a pilot phase II clinical trial. BJU Int 2006; 97 (04) 691-697
- 45 Ho TH, Nunez-Nateras R, Hou YX. et al. A study of combination bicalutamide and raloxifene for patients with castration-resistant prostate cancer. Clin Genitourin Cancer 2017; 15 (02) 196-202.e1
- 46 Wijayaratne AL, Nagel SC, Paige LA. et al. Comparative analyses of mechanistic differences among antiestrogens. Endocrinology 1999; 140 (12) 5828-5840
- 47 Andruska ND, Zheng X, Yang X. et al. Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression. Proc Natl Acad Sci U S A 2015; 112 (15) 4737-4742

