Semin Plast Surg
DOI: 10.1055/s-0044-1782649
Review Article

Update on Hypermetabolism in Pediatric Burn Patients

Sarah A. Layon
1   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
2   Division of Plastic Surgery, Texas Children's Hospital, Houston, Texas
,
Austin D. Williams
1   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
2   Division of Plastic Surgery, Texas Children's Hospital, Houston, Texas
,
Matthew J. Parham
1   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
2   Division of Plastic Surgery, Texas Children's Hospital, Houston, Texas
,
Jong O. Lee
3   Division of Burn, Trauma & Acute Care Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
4   Department of Surgery, Shriners Children's Texas, Galveston, Texas
› Author Affiliations

Abstract

Despite advancements in pediatric burn care, the profound hypermetabolic response associated with severe burns remains a multifaceted challenge throughout the continuum of care. Understanding the various physiologic disturbances that constitute hypermetabolism is crucial for a thorough evaluation and for implementing appropriate surgical and nonsurgical interventions. In this article, we describe the pathophysiology and treatment of hypermetabolism in pediatric burn patients with a focus on reducing resting energy requirements, minimizing infection, and optimizing nutrition for patients undergoing frequent surgical intervention.



Publication History

Article published online:
04 April 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lee CJ, Mahendraraj K, Houng A. et al. Pediatric burns: a single institution retrospective review of incidence, etiology, and outcomes in 2273 burn patients (1995-2013). J Burn Care Res 2016; 37 (06) e579-e585
  • 2 Korzeniowski T, Mertowska P, Mertowski S. et al. The role of the immune system in pediatric burns: a systematic review. J Clin Med 2022; 11 (08) 2262
  • 3 Preston D, Ambardekar A. The pediatric burn: current trends and future directions. Anesthesiol Clin 2020; 38 (03) 517-530
  • 4 Klein GL. The role of the musculoskeletal system in post-burn hypermetabolism. Metabolism 2019; 97: 81-86
  • 5 de Carvalho WB, Fonseca M. Slowing down hypermetabolism: first follow the basic steps. Pediatr Crit Care Med 2008; 9 (02) 236-238
  • 6 Jeschke MG, Gauglitz GG, Kulp GA. et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One 2011; 6 (07) e21245
  • 7 Stahel PF, Flierl MA, Moore EE. “Metabolic staging” after major trauma - a guide for clinical decision making?. Scand J Trauma Resusc Emerg Med 2010; 18: 34
  • 8 Reiss E, Pearson E, Artz CP, Balikov B. The metabolic response to burns. J Clin Invest 1956; 35 (01) 62-77
  • 9 Hart DW, Wolf SE, Mlcak R. et al. Persistence of muscle catabolism after severe burn. Surgery 2000; 128 (02) 312-319
  • 10 Cuthbertson DP, Angeles Valero Zanuy MA, León Sanz ML. Post-shock metabolic response. 1942. Nutr Hosp 2001; 16 (05) 176-182 , discussion 175–176
  • 11 Wolfe RR. Review: acute versus chronic response to burn injury. Circ Shock 1981; 8 (01) 105-115
  • 12 Williams FN, Herndon DN, Jeschke MG. The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg 2009; 36 (04) 583-596
  • 13 Boldeanu L, Boldeanu MV, Bogdan M. et al. Immunological approaches and therapy in burns (Review). Exp Ther Med 2020; 20 (03) 2361-2367
  • 14 Farina Jr JA, Rosique MJ, Rosique RG. Curbing inflammation in burn patients. Int J Inflamm 2013; 2013: 715645
  • 15 Jeschke MG, Chinkes DL, Finnerty CC. et al. Pathophysiologic response to severe burn injury. Ann Surg 2008; 248 (03) 387-401
  • 16 Jeschke MG, Mlcak RP, Finnerty CC. et al. Burn size determines the inflammatory and hypermetabolic response. Crit Care 2007; 11 (04) R90
  • 17 Sakallioglu AE, Basaran O, Karakayali H. et al. Interactions of systemic immune response and local wound healing in different burn depths: an experimental study on rats. J Burn Care Res 2006; 27 (03) 357-366
  • 18 Yang E, Maguire T, Yarmush ML, Berthiaume F, Androulakis IP. Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 2007; 8: 10
  • 19 Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN. Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg 2014; 259 (04) 814-823
  • 20 Wilmore DW, Long JM, Mason Jr AD, Skreen RW, Pruitt Jr BA. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 1974; 180 (04) 653-669
  • 21 Kulp GA, Herndon DN, Lee JO, Suman OE, Jeschke MG. Extent and magnitude of catecholamine surge in pediatric burned patients. Shock 2010; 33 (04) 369-374
  • 22 Núñez-Villaveirán T, Sánchez M, Millán P, García-de-Lorenzo A. Systematic review of the effect of propanolol on hypermetabolism in burn injuries. Med Intensiva (Madrid) 2015; 39 (02) 101-113
  • 23 Lefebvre PJ, Luyckx AS. Glucagon and catecholamines. In: Lefebvre PJ. ed. Glucagon II. Handbook of Experimental Pharmacology. New York, NY: Springer; 1983: 537-543
  • 24 Moller N, Vendelbo MH, Kampmann U. et al. Growth hormone and protein metabolism. Clin Nutr 2009; 28 (06) 597-603
  • 25 Takala J, Ruokonen E, Webster NR. et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999; 341 (11) 785-792
  • 26 Klein GL. Burn-induced bone loss: importance, mechanisms, and management. J Burns Wounds 2006; 5: e5
  • 27 Wolfe RR, Durkot MJ, Allsop JR, Burke JF. Glucose metabolism in severely burned patients. Metabolism 1979; 28 (10) 1031-1039
  • 28 Gauglitz GG, Herndon DN, Kulp GA, Meyer III WJ, Jeschke MG. Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab 2009; 94 (05) 1656-1664
  • 29 Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863 (10, Pt B): 2633-2644
  • 30 Jeschke MG. Post-burn hypermetabolism: past, present and future. J Burn Care Res 2016; 37 (02) 86-96
  • 31 Kraft R, Herndon DN, Al-Mousawi AM, Williams FN, Finnerty CC, Jeschke MG. Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet 2012; 379 (9820) 1013-1021
  • 32 Williams FN, Herndon DN, Hawkins HK. et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care 2009; 13 (06) R183
  • 33 Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet 2004; 363 (9424) 1895-1902
  • 34 McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin 2001; 17 (01) 107-124
  • 35 Atiyeh BS, Gunn SWA, Dibo SA. Metabolic implications of severe burn injuries and their management: a systematic review of the literature. World J Surg 2008; 32 (08) 1857-1869
  • 36 Atiyeh BS, Gunn SWA, Dibo SA. Nutritional and pharmacological modulation of the metabolic response of severely burned patients: review of the literature (part 1). Ann Burns Fire Disasters 2008; 21 (02) 63-72
  • 37 American Burn Association/American College of Surgeons. Guidelines for the operation of burn centers. J Burn Care Res 2007; 28 (01) 134-141
  • 38 Porter C, Tompkins RG, Finnerty CC, Sidossis LS, Suman OE, Herndon DN. The metabolic stress response to burn trauma: current understanding and therapies. Lancet 2016; 388 (10052): 1417-1426
  • 39 Jahoor F, Desai M, Herndon DN, Wolfe RR. Dynamics of the protein metabolic response to burn injury. Metabolism 1988; 37 (04) 330-337
  • 40 Chang DW, DeSanti L, Demling RH. Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities. Shock 1998; 10 (03) 155-160
  • 41 Newsome TW, Mason Jr AD, Pruitt Jr BA. Weight loss following thermal injury. Ann Surg 1973; 178 (02) 215-217
  • 42 Rutan RL, Herndon DN. Growth delay in postburn pediatric patients. Arch Surg 1990; 125 (03) 392-395
  • 43 Rennie MJ. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull 1985; 41 (03) 257-264
  • 44 Biolo G, Fleming RY, Maggi SP, Wolfe RR. Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle. Am J Physiol 1995; 268 (1 Pt 1): E75-E84
  • 45 Jeschke MG. The hepatic response to thermal injury: is the liver important for postburn outcomes?. Mol Med 2009; 15 (9–10): 337-351
  • 46 Jeschke MG, Barrow RE, Herndon DN. Extended hypermetabolic response of the liver in severely burned pediatric patients. Arch Surg 2004; 139 (06) 641-647
  • 47 Jeschke MG, Micak RP, Finnerty CC, Herndon DN. Changes in liver function and size after a severe thermal injury. Shock 2007; 28 (02) 172-177
  • 48 Moshage H. Cytokines and the hepatic acute phase response. J Pathol 1997; 181 (03) 257-266
  • 49 Gilpin DA, Hsieh CC, Kuninger DT, Herndon DN, Papaconstantinou J. Effect of thermal injury on the expression of transcription factors that regulate acute phase response genes: the response of C/EBP alpha, C/EBP beta, and C/EBP delta to thermal injury. Surgery 1996; 119 (06) 674-683
  • 50 Gilpin DA, Hsieh CC, Kuninger DT, Herndon DN, Papaconstantinou J. Regulation of the acute phase response genes alpha 1-acid glycoprotein and alpha 1-antitrypsin correlates with sensitivity to thermal injury. Surgery 1996; 119 (06) 664-673
  • 51 Hiyama DT, von Allmen D, Rosenblum L, Ogle CK, Hasselgren PO, Fischer JE. Synthesis of albumin and acute-phase proteins in perfused liver after burn injury in rats. J Burn Care Rehabil 1991; 12 (01) 1-6
  • 52 Livingston DH, Mosenthal AC, Deitch EA. Sepsis and multiple organ dysfunction syndrome: a clinical-mechanistic overview. New Horiz 1995; 3 (02) 257-266
  • 53 Aarsland A, Chinkes D, Wolfe RR. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J Clin Invest 1996; 98 (09) 2008-2017
  • 54 Barret JP, Jeschke MG, Herndon DN. Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma 2001; 51 (04) 736-739
  • 55 Selye H. Stress and the general adaptation syndrome. BMJ 1950; 1 (4667) 1383-1392
  • 56 Desborough JP. The stress response to trauma and surgery. Br J Anaesth 2000; 85 (01) 109-117
  • 57 Williams FN, Herndon DN, Suman OE. et al. Changes in cardiac physiology after severe burn injury. J Burn Care Res 2011; 32 (02) 269-274
  • 58 Finnerty CC, Herndon DN. Is propranolol of benefit in pediatric burn patients?. Adv Surg 2013; 47: 177-197
  • 59 Goldstein DS. Catecholamines and stress. Endocr Regul 2003; 37 (02) 69-80
  • 60 Kassim TA, Clarke DD, Mai VQ, Clyde PW, Mohamed Shakir KM. Catecholamine-induced cardiomyopathy. Endocr Pract 2008; 14 (09) 1137-1149
  • 61 Carey JS, Mohr PA, Brown RS, Shoemaker WC. Cardiovascular function in hemorrhage, trauma and sepsis: determinants of cardiac output and cardiac work. Ann Surg 1969; 170 (06) 910-921
  • 62 Bristow MR, Ginsburg R, Minobe W. et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982; 307 (04) 205-211
  • 63 Klein GL, Xie Y, Qin YX. et al. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study. J Bone Miner Metab 2014; 32 (02) 136-141
  • 64 Klein GL, Herndon DN, Goodman WG. et al. Histomorphometric and biochemical characterization of bone following acute severe burns in children. Bone 1995; 17 (05) 455-460
  • 65 Guttridge DC. A TGF-β pathway associated with cancer cachexia. Nat Med 2015; 21 (11) 1248-1249
  • 66 Waning DL, Mohammad KS, Reiken S. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med 2015; 21 (11) 1262-1271
  • 67 Klein GL, Herndon DN, Langman CB. et al. Long-term reduction in bone mass after severe burn injury in children. J Pediatr 1995; 126 (02) 252-256
  • 68 Przkora R, Barrow RE, Jeschke MG. et al. Body composition changes with time in pediatric burn patients. J Trauma 2006; 60 (05) 968-971 , discussion 971
  • 69 Przkora R, Herndon DN, Jeschke MG. The factor age and the recovery of severely burned children. Burns 2008; 34 (01) 41-44
  • 70 Cuijpers MD, Baartmans MGA, van Zuijlen PPM, Ket JCF, Pijpe A. Children's growth and motor development following a severe burn: a systematic review. Burns Trauma 2023; 11: tkad011
  • 71 Cambiaso-Daniel J, Rivas E, Carson JS. et al. Cardiorespiratory capacity and strength remain attenuated in children with severe burn injuries at over 3 years postburn. J Pediatr 2018; 192: 152-158
  • 72 Arnaud SB, Sherrard DJ, Maloney N, Whalen RT, Fung P. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Environ Med 1992; 63 (01) 14-20
  • 73 Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990; 5 (08) 843-850
  • 74 Osilla EV, Marsidi JL, Shumway KR, Sharma S. Physiology, Temperature Regulation. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023. . Accessed October 25, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK507838/
  • 75 Barr PO, Birke G, Liliedal' SO. The treatment of thermal burns with dry, warm air [in Russian]. Eksp Khir Anesteziol 1968; 13 (02) 39-43
  • 76 Barr PO, Birke G, Liljedahl SO, Plantin LO. Studies on burns. X. Changes in BMR and evaporative water loss in the treatment of severe burns with warm dry air. Scand J Plast Reconstr Surg 1969; 3 (01) 30-38
  • 77 Caldwell FT. Metabolic response to thermal trauma: II. Nutritional studies with rats at two environmental temperatures. Ann Surg 1962; 155 (01) 119-126
  • 78 Zawacki BE, Spitzer KW, Mason Jr AD, Johns LA. Does increased evaporative water loss cause hypermetabolism in burned patients?. Ann Surg 1970; 171 (02) 236-240
  • 79 Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987; 317 (07) 403-408
  • 80 Hart DW, Wolf SE, Chinkes DL. et al. Determinants of skeletal muscle catabolism after severe burn. Ann Surg 2000; 232 (04) 455-465
  • 81 Hart DW, Wolf SE, Chinkes DL. et al. Effects of early excision and aggressive enteral feeding on hypermetabolism, catabolism, and sepsis after severe burn. J Trauma 2003; 54 (04) 755-761 , discussion 761–764
  • 82 Demling RH, Lalonde C. Effect of partial burn excision and closure on postburn oxygen consumption. Surgery 1988; 104 (05) 846-852
  • 83 Gacto-Sanchez P. Surgical treatment and management of the severely burn patient: Review and update. Med Intensiva (Madrid) 2017; 41 (06) 356-364
  • 84 Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif Organs 2013; 16 (04) 397-403
  • 85 Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering–in vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63 (4–5): 352-366
  • 86 Hudson AS, Morzycki AD, Wong J. Safety and benefits of intraoperative enteral nutrition in critically ill pediatric burn patients: a systematic review and pooled analysis. J Burn Care Res 2022; 43 (06) 1343-1350
  • 87 Rodriguez NA, Jeschke MG, Williams FN, Kamolz LP, Herndon DN. Nutrition in burns: Galveston contributions. JPEN J Parenter Enteral Nutr 2011; 35 (06) 704-714
  • 88 Mochizuki H, Trocki O, Dominioni L, Brackett KA, Joffe SN, Alexander JW. Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 1984; 200 (03) 297-310
  • 89 Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 2002; 183 (04) 390-398
  • 90 Kudsk KA, Croce MA, Fabian TC. et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 1992; 215 (05) 503-511 , discussion 511–513
  • 91 Deitch EA. Intestinal permeability is increased in burn patients shortly after injury. Surgery 1990; 107 (04) 411-416
  • 92 van Elburg RM, Uil JJ, de Monchy JG, Heymans HS. Intestinal permeability in pediatric gastroenterology. Scand J Gastroenterol Suppl 1992; 194: 19-24
  • 93 McDonald WS, Sharp Jr CW, Deitch EA. Immediate enteral feeding in burn patients is safe and effective. Ann Surg 1991; 213 (02) 177-183
  • 94 Suman OE, Mlcak RP, Chinkes DL, Herndon DN. Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method. Burns 2006; 32 (03) 335-342
  • 95 Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39 (Suppl. 01) 5-41
  • 96 Gore DC, Rutan RL, Hildreth M, Desai MH, Herndon DN. Comparison of resting energy expenditures and caloric intake in children with severe burns. J Burn Care Rehabil 1990; 11 (05) 400-404
  • 97 Carson JS, Khosrozadeh H, Norbury WB. Nutritional needs and support for the burned patient. In: Herndon D. ed. Total Burn Care. 5th ed.. New York, NY: Elsevier; 2018: 287-300.e2
  • 98 Hall KL, Shahrokhi S, Jeschke MG. Enteral nutrition support in burn care: a review of current recommendations as instituted in the Ross Tilley Burn Centre. Nutrients 2012; 4 (11) 1554-1565
  • 99 Williams FN, Branski LK, Jeschke MG, Herndon DN. What, how, and how much should patients with burns be fed?. Surg Clin North Am 2011; 91 (03) 609-629
  • 100 Shields BA, VanFosson CA, Pruskowski KA, Gurney JM, Rizzo JA, Cancio LC. High-carbohydrate vs high-fat nutrition for burn patients. Nutr Clin Pract 2019; 34 (05) 688-694
  • 101 Guillory A, Porter C, Suman OE, Zapata-Sirvent R, Finnerty CC. Modulation of the hypermetabolic response after burn injury. In: Herndon D. ed. Total Burn Care. 5th ed.. New York, NY: Elsevier; 2018: 301-306.e3
  • 102 Wischmeyer PE, Lynch J, Liedel J. et al. Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med 2001; 29 (11) 2075-2080
  • 103 Zhou YP, Jiang ZM, Sun YH, Wang XR, Ma EL, Wilmore D. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr 2003; 27 (04) 241-245
  • 104 Heyland DK, Wibbenmeyer L, Pollack JA. et al; RE-ENERGIZE Trial Team. A randomized trial of enteral glutamine for treatment of burn injuries. N Engl J Med 2022; 387 (11) 1001-1010
  • 105 Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985) 2001; 91 (03) 1168-1175
  • 106 Hart DW, Wolf SE, Ramzy PI. et al. Anabolic effects of oxandrolone after severe burn. Ann Surg 2001; 233 (04) 556-564
  • 107 Przkora R, Jeschke MG, Barrow RE. et al. Metabolic and hormonal changes of severely burned children receiving long-term oxandrolone treatment. Ann Surg 2005; 242 (03) 384-389 , discussion 390–391
  • 108 Wolf SE, Edelman LS, Kemalyan N. et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res 2006; 27 (02) 131-139 , discussion 140–141
  • 109 Bulger EM, Jurkovich GJ, Farver CL, Klotz P, Maier RV. Oxandrolone does not improve outcome of ventilator dependent surgical patients. Ann Surg 2004; 240 (03) 472-478 , discussion 478–480
  • 110 Jeschke MG, Finnerty CC, Suman OE, Kulp G, Mlcak RP, Herndon DN. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg 2007; 246 (03) 351-360 , discussion 360–362
  • 111 Roth LK. Gemini Laboratories, LLC. et al. Withdrawal of approval of one new drug application for OXANDRIN (oxandrolone) tablets and four abbreviated new drug applications for oxandrolone tablets. Food and Drug Administration; 2023: 41970-41971 . Accessed February 23, 2024 at: https://www.govinfo.gov/content/pkg/FR-2023-06-28/pdf/2023-13733.pdf
  • 112 Herndon DN, Hawkins HK, Nguyen TT, Pierre E, Cox R, Barrow RE. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg 1995; 221 (06) 649-656 , discussion 656–659
  • 113 Klein GL, Wolf SE, Langman CB. et al. Effects of therapy with recombinant human growth hormone on insulin-like growth factor system components and serum levels of biochemical markers of bone formation in children after severe burn injury. J Clin Endocrinol Metab 1998; 83 (01) 21-24
  • 114 Herndon DN, Barrow RE, Kunkel KR, Broemeling L, Rutan RL. Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 1990; 212 (04) 424-429 , discussion 430–431
  • 115 Barret JP, Dziewulski P, Jeschke MG, Wolf SE, Herndon DN. Effects of recombinant human growth hormone on the development of burn scarring. Plast Reconstr Surg 1999; 104 (03) 726-729
  • 116 Ramirez RJ, Wolf SE, Barrow RE, Herndon DN. Growth hormone treatment in pediatric burns: a safe therapeutic approach. Ann Surg 1998; 228 (04) 439-448
  • 117 Singh KP, Prasad R, Chari PS, Dash RJ. Effect of growth hormone therapy in burn patients on conservative treatment. Burns 1998; 24 (08) 733-738
  • 118 Cioffi WG, Gore DC, Rue III LW. et al. Insulin-like growth factor-1 lowers protein oxidation in patients with thermal injury. Ann Surg 1994; 220 (03) 310-316 , discussion 316–319
  • 119 Herndon DN, Ramzy PI, DebRoy MA. et al. Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment. Ann Surg 1999; 229 (05) 713-720 , discussion 720–722
  • 120 Møller S, Jensen M, Svensson P, Skakkebaek NE. Insulin-like growth factor 1 (IGF-1) in burn patients. Burns 1991; 17 (04) 279-281
  • 121 Spies M, Wolf SE, Barrow RE, Jeschke MG, Herndon DN. Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children. Crit Care Med 2002; 30 (01) 83-88
  • 122 Gauglitz GG, Herndon DN, Jeschke MG. Insulin resistance postburn: underlying mechanisms and current therapeutic strategies. J Burn Care Res 2008; 29 (05) 683-694
  • 123 Gore DC, Chinkes DL, Hart DW, Wolf SE, Herndon DN, Sanford AP. Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients. Crit Care Med 2002; 30 (11) 2438-2442
  • 124 Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 2001; 51 (03) 540-544
  • 125 Jeschke MG, Kulp GA, Kraft R. et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med 2010; 182 (03) 351-359
  • 126 Jeschke MG, Pinto R, Herndon DN, Finnerty CC, Kraft R. Hypoglycemia is associated with increased postburn morbidity and mortality in pediatric patients. Crit Care Med 2014; 42 (05) 1221-1231
  • 127 Jeschke MG. Clinical review: glucose control in severely burned patients - current best practice. Crit Care 2013; 17 (04) 232
  • 128 Gore DC, Wolf SE, Herndon DN, Wolfe RR. Metformin blunts stress-induced hyperglycemia after thermal injury. J Trauma 2003; 54 (03) 555-561
  • 129 Gore DC, Wolf SE, Sanford A, Herndon DN, Wolfe RR. Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann Surg 2005; 241 (02) 334-342
  • 130 Jeschke MG, Abdullahi A, Burnett M, Rehou S, Stanojcic M. Glucose control in severely burned patients using metformin: an interim safety and efficacy analysis of a phase II randomized controlled trial. Ann Surg 2016; 264 (03) 518-527
  • 131 Yousuf Y, Datu A, Barnes B, Amini-Nik S, Jeschke MG. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther 2020; 11 (01) 18
  • 132 Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 2001; 345 (17) 1223-1229
  • 133 Brooks NC, Song J, Boehning D. et al. Propranolol improves impaired hepatic phosphatidylinositol 3-kinase/akt signaling after burn injury. Mol Med 2012; 18 (01) 707-711
  • 134 Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma 2007; 62 (03) 676-681
  • 135 Gore DC, Honeycutt D, Jahoor F, Barrow RE, Wolfe RR, Herndon DN. Propranolol diminishes extremity blood flow in burned patients. Ann Surg 1991; 213 (06) 568-573 , discussion 573–574
  • 136 Herndon DN, Rodriguez NA, Diaz EC. et al. Long-term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg 2012; 256 (03) 402-411
  • 137 Williams FN, Herndon DN, Kulp GA, Jeschke MG. Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery 2011; 149 (02) 231-239