Pneumologie 2018; 72(07): 507-513
DOI: 10.1055/s-0044-102169
Point of View
© Georg Thieme Verlag KG Stuttgart · New York

Misleading “New Insights into the Chrysotile Debate”

Irreführende „neue Einblicke in die Chrysotil-Debatte“
H.-J. Woitowitz
1   Emeritus, Institut und Poliklinik für Arbeits- und Sozialmedizin, Justus-Liebig-Universität Gießen (JLU)
,
X. Baur
2   Universitätsklinikum Hamburg-Eppendorf, ehem. Lehrstuhl Arbeitsmedizin; European Society for Environmental and Occupational Medicine (EOM Society); Berlin, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received12. Januar 2018

accepted after revision05. Februar 2018

Publikationsdatum:
18. Mai 2018 (online)

Abstract

Although there is no dispute among independent scientists about the carcinogenic and fibrogenic effects of chrysotile, the asbestos industry has been continuously and successfully acting to cast doubts on its harm. Another approach including asbestos insurance entities is to refuse compensation by raising the bar and fight criminal prosecution for asbestos-related diseases by the help of paid scientists. A recent publication on asbestos fibre burden in human lungs fits well in this context. The claim that chrysotile fibres are biopersistent in human lung is not based on the data provided by these authors, and, additionally, exhibits serious inconsistencies and obvious mismeasurements and significant methodological problems. The conclusion of the authors that fibre analysis of workersʼ lungs “is of high significance for differential diagnosis, risk assessment and occupational compensation” is unfounded and reprehensible. Also the available literature, the statements of the WHO, IARC, other decisive independent international organizations, and all our experience provide abundant evidence to the contrary. Note, the method is generally restricted to research only and is not recognized for diagnostic purpose and compensation in any other country. In conclusion, fibre counting in lung tissues should not be used to estimate former exposure to chrysotile comprising c. 94 % of applied asbestos in Germany. The authors claim that the analyses can improve the compensation rates in Germany. However, the opposite has been the case; it significantly worsens the non-justified denial of well-substantiated compensation claims.

Zusammenfassung

Obwohl in der unabhängigen Wissenschaft Konsens über die karzinogene und fibrogene Wirkung von Weißasbest (Chrysotil) besteht, verbreitet die Asbestindustrie bis heute erfolgreich Zweifel an dessen gesundheitsschädigenden Wirkungen. Auch werden vonseiten der Arbeitgeber-Unfallversicherungen (Berufsgenossenschaften) nicht selten Entschädigungen von asbestbedingten Erkrankungen durch hohe Hürden im Anerkennungsverfahren verweigert. Dazu tragen auch gerichtliche Auseinandersetzungen mit Unterstützung bezahlter Wissenschaftler bei. In diesem Zusammenhang ist eine kürzlich erschienene Veröffentlichung zu sehen, die sich auf die Asbestfaserzählung in der menschlichen Lunge bezieht und ohne eine wissenschaftliche Basis vorgibt, dass Chrysotilfasern in der menschlichen Lunge biopersistent seien und deren Zahl von großer Bedeutung in der Begutachtung sei. Die hierfür angeführten Daten sind inkonsistent, basieren auf offensichtlichen Fehlmessungen oder methodischen Problemen. Sie widersprechen dem wissenschaftlichen Kenntnisstand, Statements der WHO, der IARC und anderer maßgebender unabhängiger internationaler Organisationen ebenso wie unserer gesamten diesbezüglichen Erfahrung. Derartige Faserzählungen sind allgemein beschränkt auf wissenschaftliche Fragestellungen; sie werden in keinem anderen Land für die Diagnostik und Begutachtung eingesetzt. Die Schlussfolgerung der Autoren, dass die Faseranalyse in der Asbestarbeiterlunge von großer Bedeutung für die Differenzialdiagnose, Risikoeinschätzung und Entschädigung sei, entbehrt jeder Grundlage und ist abzulehnen. Die Faseranalytik sollte infolge der nicht gegebenen Biopersistenz nicht zur Abschätzung einer früheren Exposition gegenüber Chrysotil, der mit ca. 94 % hierzulande ganz im Vordergrund gestandenen Asbestart, verwendet werden. Denn solche Faseranalysen tragen in erheblichem Maße zur nicht gerechtfertigten Ablehnung von Entschädigungsansprüchen in gut begründeten Berufskrankheitsfällen bei.

 
  • References

  • 1 Egilman D, Fehnel C, Bohme SR. Exposing the “myth” of ABC, “anything but chrysotile”: a critique of the Canadian asbestos mining industry and McGill University chrysotile studies. Am J Ind Med 2003; 44: 540-557
  • 2 Egilman D, Howe S. Against anti-health epidemiology: corporate obstruction of public health via manipulation of epidemiology. Int J Occup Environ Health 2007; 13: 118-124
  • 3 Lemen RA. Asbestos in brakes: exposure and risk of disease. Am J Ind Med 2004; 45: 229-237
  • 4 Egilman DS, Bird T, Lee C. MetLife and its corporate allies: dust diseases and the manipulation of science. Int J Occup Environ Health 2013; 19: 287-303
  • 5 Egilman D, Bird T, Lee C. Dust diseases and the legacy of corporate manipulation of science and law. Int J Occup Environ Health 2014; 20: 115-125
  • 6 Magnani C, Fubini B, Mirabelli D. et al. Pleural mesothelioma: epidemiological and public health issues. Report from the Second Italian Consensus Conference on Pleural Mesothelioma. Med Lav 2013; 104: 191-202
  • 7 Terracini B, Mirabelli D, Baur X. et al. Comments on the causation of malignant mesothelioma: Rebutting the false concept that recent exposures to asbestos do not contribute to causation of mesothelioma. Am J Ind Med 2016; 59: 506-507
  • 8 Terracini B, Mirabelli D, Baur X. et al. Re: Comments on the causation of malignant mesothelioma: Rebutting the false concept that recent exposures to asbestos do not contribute to causation of mesothelioma. Am J Ind Med 2016; 59: 1180-1182
  • 9 Feder IS, Tischoff I, Theile A. et al. The asbestos fibre burden in human lungs: new insights into the chrysotile debate. Eur Respir J 2017; 49
  • 10 Dodson RF, OʼSullivan M, Corn CJ. et al. Analysis of asbestos fiber burden in lung tissue from mesothelioma patients. Ultrastruct Pathol 1997; 21: 321-336
  • 11 McDonald JC. Health implications of environmental exposure to asbestos. Environ Health Perspect 1985; 62: 319-328
  • 12 Berry G. Models for mesothelioma incidence following exposure to fibers in terms of timing and duration of exposure and the biopersistence of the fibers. Inhal Toxicol 1999; 11: 111-130
  • 13 de Klerk NH, Musk AW, Williams V. et al. Comparison of measures of exposure to asbestos in former crocidolite workers from Wittenoom Gorge, W. Australia. Am J Ind Med 1996; 30: 579-587
  • 14 Du Toit RS. An estimate of the rate at which crocidolite asbestos fibres are cleared from the lung. Ann Occup Hyg 1991; 35: 433-438
  • 15 Boulanger G, Andujar P, Pairon JC. et al. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environmental health: a global access science source 2014; 13: 59
  • 16 Churg A. Deposition and clearance of chrysotile asbestos. Ann Occup Hyg 1994; 38: 625-633, 424-625
  • 17 Gilham C, Rake C, Burdett G. et al. Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden. Occup Environ Med 2016; 73: 290-299
  • 18 Feder IS, Theile A, Tannapfel A. Histological findings and lung dust analysis as the basis for occupational disease compensation in asbestos-related lung cancer in Germany. Int J Occup Med Environ Health 2018; 31: 293-305
  • 19 IARC. Asbestos (Chrysotile, Amosite, Crocidolite, Tremolite, Actinolite and Anthophyllite). http://monographs.iarc.fr/ENG/Monographs/vol100C/
  • 20 Frank AL, Dodson RF, Williams MG. Carcinogenic implications of the lack of tremolite in UICC reference chrysotile. Am J Ind Med 1998; 34: 314-317
  • 21 Lemen RA. Mesothelioma from asbestos exposures: Epidemiologic patterns and impact in the United States. J Toxicol Environ Health B Crit Rev 2016; 19: 250-265
  • 22 Steenland K, Burnett C, Lalich N. et al. Dying for work: The magnitude of US mortality from selected causes of death associated with occupation. Am J Ind Med 2003; 43: 461-482
  • 23 Wolff H, Vehmas T, Oksa P. et al. Asbestos, asbestosis, and cancer, the Helsinki criteria for diagnosis and attribution 2014: recommendations. Scand J Work Environ Health 2015; 41: 5-15
  • 24 American Thoracic S. Diagnosis and initial management of nonmalignant diseases related to asbestos. Am J Respir Crit Care Med 2004; 170: 691-715
  • 25 IJPC. 2012 http://www.ijpc-se.org/documents/01.JPC-SE-Position_Statement_on_Asbestos-June_4_2012-Summary_and_Appendix_A_English.pdf
  • 26 Lenters V, Vermeulen R, Dogger S. et al. A meta-analysis of asbestos and lung cancer: is better quality exposure assessment associated with steeper slopes of the exposure-response relationships?. Environ Health Perspect 2011; 119: 1547-1555
  • 27 Lenters V, Burdorf A, Vermeulen R. et al. Quality of evidence must guide risk assessment of asbestos. The Annals of occupational hygiene 2012; 56: 879-887
  • 28 Wang X, Lin S, Yano E. et al. Exposure-specific lung cancer risks in Chinese chrysotile textile workers and mining workers. Lung Cancer 2014; 85: 119-124
  • 29 Wang X, Yano E, Lin S. et al. Cancer mortality in Chinese chrysotile asbestos miners: exposure-response relationships. PLoS One 2013; 8: e71899
  • 30 Stayner L, Kuempel E, Gilbert S. et al. An epidemiological study of the role of chrysotile asbestos fibre dimensions in determining respiratory disease risk in exposed workers. Occup Environ Med 2008; 65: 613-619
  • 31 Loomis D, Dement JM, Elliott L. et al. Increased lung cancer mortality among chrysotile asbestos textile workers is more strongly associated with exposure to long thin fibres. Occup Environ Med 2012; 69: 564-568
  • 32 CollegiumRamazzini. The 18th Collegium Ramazzini statement: The global health dimensions of asbestos and asbestos-related diseases. Scand J Work Environ Health 2016; 42: 86-90
  • 33 Heidermanns G, Riediger G, Schütz A. Asbestbestimmung in industriellen Feinstäuben und in Lungenstäuben. Staub Reinhalt Luft 1976; 36: 107-116
  • 34 Kern DG, Hanley KT, Roggli VL. Malignant mesothelioma in the jewelry industry. Am J Ind Med 1992; 21: 409-416
  • 35 Velasco-Garcia MI, Cruz MJ, Diego C. et al. First Identification of Pulmonary Asbestos Fibres in a Spanish Population. Lung 2017; DOI: 10.1007/s00408-017-0042-1.
  • 36 Woitowitz HJ, Manke J, Brückel B. et al. Asbestkörperchen als Beweismittel einer beruflichen Gefährdung durch Weißasbest Chrysotil? Ferruginous bodies as evidence of occupational endangering by chrysotile asbestos?. Zbl Arbeitsmed 1986; 36: 354-364
  • 37 Woitowitz H-J, Hillerdal G, Berghäuser KH. et al. Risiko- und Einflussfaktoren des diffusen malignen Mesothelioms (DMM). Bremerhaven: Wirtschaftsverl. NW, Verl. für Neue Wissenschaft; 1994
  • 38 Churg A. Lung asbestos content in long-term residents of a chrysotile mining town. Am Rev Respir Dis 1986; 134: 125-127
  • 39 Churg A, Wiggs B, Depaoli L. et al. Lung asbestos content in chrysotile workers with mesothelioma. Am Rev Respir Dis 1984; 130: 1042-1045
  • 40 Dodson RF, OʼSullivan MF, Williams MG. et al. Analysis of cores of ferruginous bodies from former asbestos workers. Environ Res 1982; 28: 171-178
  • 41 Morgan A, Holmes A. The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res 1985; 38: 283-292
  • 42 Churg A, Warnock ML, Green N. Analysis of the cores of ferruginous (asbestos) bodies from the general population. II. True asbestos bodies and pseudoasbestos bodies. Lab Invest 1979; 40: 31-38
  • 43 Churg AM, Warnock ML. Analysis of the cores of ferruginous (asbestos) bodies from the general population. III. Patients with environmental exposure. Lab Invest 1979; 40: 622-626
  • 44 Gylseth B, Mowe G, Wannag A. Fibre type and concentration in the lungs of workers in an asbestos cement factory. Br J Ind Med 1983; 40: 375-379
  • 45 Pooley FD. An examination of the fibrous mineral content of asbestos lung tissue from the Canadian chrysotile mining industry. Environ Res 1976; 12: 281-298
  • 46 Finkelstein MM, Dufresne A. Inferences on the kinetics of asbestos deposition and clearance among chrysotile miners and millers. Am J Ind Med 1999; 35: 401-412
  • 47 Dodson RF, Hammar SP, Poye LW. A technical comparison of evaluating asbestos concentration by phase-contrast microscopy (PCM), scanning electron microscopy (SEM), and analytical transmission electron microscopy (ATEM) as illustrated from data generated from a case report. Inhal Toxicol 2008; 20: 723-732
  • 48 Churg A, Wright JL. Persistence of natural mineral fibers in human lungs: an overview. Environ Health Perspect 1994; 102 (Suppl. 05) 229-233
  • 49 Suzuki Y, Yuen SR. Asbestos tissue burden study on human malignant mesothelioma. Ind Health 2001; 39: 150-160
  • 50 Sebastien P, Janson X, Gaudichet A. et al. Asbestos retention in human respiratory tissues: comparative measurements in lung parenchyma and in parietal pleura. IARC Sci Publ 1980; 30: 237-246
  • 51 Wagner JC, Skidmore JW. Asbestos dust deposition and retention in rats. Annals of the New York Academy of Sciences 1965; 132: 77-86
  • 52 Tossavainen A. Consensus report. Asbestos, asbestosis, and cancer: the Helsinki Criteria for diagnosis and attribution. Scand J Work Environ Health 1997; 23: 211-316
  • 53 Bernstein DM, Chevalier J, Smith P. Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal Toxicol 2005; 17: 427-449
  • 54 District Court EC. Texas 40th Judicial District Emma Josephine Maloney Martin vs Quigley Company, Inc. 2007
  • 55 LaDou J, Castleman B, Frank A. et al. The case for a global ban on asbestos. Environ Health Perspect 2010; 118: 897-901
  • 56 Gwinn MR, Craig J, Axelrad DA. et al. Meeting report: Estimating the benefits of reducing hazardous air pollutants--summary of 2009 workshop and future considerations. Environ Health Perspect 2011; 119: 125-130
  • 57 Churg A, DePaoli L. Clearance of chrysotile asbestos from human lung. Exp Lung Res 1988; 14: 567-574
  • 58 Schneider J, Arhelger R, Brueckel B. Lungenstaubanalysen in der Begutachtung asbestverursachter Erkrankungen. Zbl Arbeitsmed 2015; 65: 305-309
  • 59 Schneider J, Arhelger R, Brueckel B. Leserbriefantwort zum Artikel Lungenstaubanalysen in der Begutachtung asbestverursachter Erkrankungen. Zbl Arbeitsmed 2016; 4: 228-231
  • 60 Baur X. Response to the letter of R. Merget, I. Feder and A. Tannapfel. Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/28222480 [Zugriff: 13.2.2018]
  • 61 Baur X. Asbestos: Socio-legal and Scientific Controversies and Unsound Science in the Context of the Worldwide Asbestos Tragedy – Lessons to be Learned. Pneumologie 2016; 70: 405-412
  • 62 Baur X. Nichtwissen, fehlende Transparenz und Information. Zbl Arbeitsmed 2015; 65: 340-346
  • 63 Baur X. Asbest: Der Kampf um einen effektiven Arbeitsschutz, das Asbestverwendungsverbot und eine gerechte Kompensation der Asbestopfer (in German). Zbl Arbeitsmed 2015; 65: 340-346
  • 64 Woitowitz H-J, Baur X. Asbestos-induced lung cancer in Germany: is the compensation practice, in accordance with the epidemiological findings?. Carpi, Italy: Collegium Ramazzini, Annual Ramazzini Days; 2014
  • 65 Woitowitz H--J. The theory of asbestos bodies is dead – German Mesothelioma register – what next?. Zbl Arbeitsmed 2016; 66: 232-238
  • 66 CollegiumRamazzini. Comments on the 2014 Helsinki consensus report on asbestos. J Occup Health 2016; 58: 224-227
  • 67 Begin R, Christman JW. Detailed occupational history: the cornerstone in diagnosis of asbestos-related lung disease. Am J Respir Crit Care Med 2001; 163: 598-599
  • 68 Woitowitz H-J, Rödelsperger K, Manke J. et al. Identification and quantification of asbestos and other mineral fibres in human lung tissue with analytical scanning transmission microscopy (STEM). Dortmund: Bundesanstalt für Arbeitsschutz; 1988