CC BY-NC-ND 4.0 · Ultrasound Int Open 2018; 04(01): E23-E29
DOI: 10.1055/s-0044-102013
Original Article
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals

Caroline Ewertsen
Copenhagen University Hospital, Rigshospitalet, Department of Radiology, Copenhagen OE, Denmark
,
Jonathan Carlsen
Rigshospitalet, Radiologisk klinik, Kopenhagen, Denmark
,
Mohammed Aftab Perveez
Rigshospitalet, Glostrup, Headache Diagnostic Laboratory, Danish Headache Center and Department of Neurology, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
,
Henrik Schytz
Rigshospitalet, Glostrup, Headache Diagnostic Laboratory, Danish Headache Center and Department of Neurology, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
› Author Affiliations
Further Information

Publication History

received 14 April 2017
revised 25 October 2017

accepted 09 January 2018

Publication Date:
04 April 2018 (online)

Abstract

Purpose to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers.

Materials and Methods 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI’s in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters – muscle pennation, gender, dominant vs non-dominant side and day was evaluated.

Results The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/−0.25), semispinal 3.36 (SD:+/−0.75), splenius 3.04 (SD:+/−0.65), sternocleidomastoid 2.75 (SD:+/−0.23), trapezius 3.20 (SD:+/−0.27) and trapezius lateral 3.87 (SD:+/−3.87).

Conclusion The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.