Drug Res (Stuttg) 2018; 68(09): 485-498
DOI: 10.1055/s-0044-101256
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pyrrolopyrimidine, A Multifaceted Scaffold in Cancer Targeted Therapy

Mai Adel
1   Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
,
Rabah A. T. Serya
1   Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
,
Deena S. Lasheen
1   Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
,
Khaled A. M. Abouzid
1   Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
› Author Affiliations
Further Information

Publication History

received 22 November 2017

accepted 16 January 2018

Publication Date:
12 February 2018 (online)

Abstract

Pyrrolopyrimidine derivatives represent a class of biologically active heterocyclic compounds which can serve as promising scaffolds that display remarkable biological activities, such as anti-inflammatory, antimicrobial, antiviral and anticancer. In the last few years, several pyrrolopyrimidine derivatives have been approved by the US FDA and in other countries for the treatment of different diseases or are currently in phase I/II clinical trials. Due to their inimitable antioxidant and anti-tumor properties, researchers were inspired to develop novel derivatives for the treatment of different types of cancer. The present review summarizes recent literature up to 2017 on the most recent development in the medicinal chemistry of pyrrolopyrimidine derivatives and their potential as anticancer therapeutics, especially compounds acting as kinase inhibitors.

 
  • References

  • 1 Melik-Ogandzhanyan R, Khachatryan VE, Gapoyan AS. Furo-, Thieno-, and Pyrrolo-[2, 3-d] pyrimidines. Russ Chem Rev 1985; 54: 262-276
  • 2 Mohamed MS, Kamel R. El-hameed RHA. Evaluation of the anti-inflammatory activity of some pyrrolo [2, 3-d] pyrimidine derivatives. Med Chem Res 2013; 22: 2244-2252
  • 3 Hilmy KMH, Khalifa MMA, Hawata MAA. et al. Synthesis of new pyrrolo [2, 3-d] pyrimidine derivatives as antibacterial and antifungal agents. Eur J Med Chem 2010; 45: 5243-5250
  • 4 Hassan SM, El-Maghraby AA, Abdel Aal MM. et al. Heteroaromatization with sulfonamido phenyl ethanone, part I: synthesis of novel pyrrolo [2, 3-d] pyrimidine and pyrrolo [3, 2-E][1, 2, 4] Triazolo [1, 5-C] pyrimidine derivatives containing dimethylsulfonamide moiety. Phosphorus, Sulfur, and Silicon 2009; 184: 291-308
  • 5 Xie H, Zeng S, He Y. et al. Rapid generation of a novel DPP-4 inhibitor with long-acting properties: SAR study and PK/PD evaluation. Eur J Med Chem 2017; 141: 519-529
  • 6 Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356-5362
  • 7 El Ella DAA, Ghorab MM, Noaman E. et al. Molecular modeling study and synthesis of novel pyrrolo [2, 3-d] pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg Med Chem 2008; 16: 2391-2402
  • 8 Clark MP, George KM, Bookland RG. et al. Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). Bioorg Med Chem Lett 2007; 17: 1250-1253
  • 9 Merighi S, Mirandola P, Varani K. et al. A glance at adenosine receptors: Novel target for antitumor therapy. Pharmacol Ther 2003; 100: 31-48
  • 10 Moriarty KJ, Koblish HK, Garrabrant T. et al. The synthesis and SAR of 2-amino-pyrrolo [2, 3-d] pyrimidines: A new class of Aurora-A kinase inhibitors. Bioorg Med Chem Lett 2006; 16: 5778-5783
  • 11 Fischer T, Krüger T, Najjar A. et al. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg Med Chem Lett 2017; 27: 2708-2712
  • 12 Fairhurst RA, Marsilje TH, Stutz S. et al. Optimisation of a 5-[3-phenyl-(2-cyclic-ether)-methyl-ether]-4-aminopyrrolopyrimidine series of IGF-1 R inhibitors. Bioorg Med Chem Lett 2016; 26: 2057-2064
  • 13 Liu Y, Yin Y, Zhang Z. et al. Structural optimization elaborates novel potent Akt inhibitors with promising anticancer activity. Eur J Med Chem 2017; 138: 543-551
  • 14 Hildick BG, Shaw G. Purines, pyrimidines, and imidazoles. Part XXXVII. Some new syntheses of pyrazolo [3, 4-d] pyrimidines, including allopurinol. J Chem Soc C Org 1971; 1610-1613
  • 15 Ishikawa T, Seto M, Banno H. et al. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo [3, 2-d] pyrimidine scaffold. J Med Chem 2011; 54: 8030-8050
  • 16 Ballard P, Bradbury RH, Harris CS. et al. Inhibitors of epidermal growth factor receptor tyrosine kinase: Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Bioorg Med Chem Lett 2006; 16: 1633-1637
  • 17 Mikalsen T, Gerits N, Moens U. Inhibitors of signal transduction protein kinases as targets for cancer therapy. Biotechnol Annu Rev 2006; 12: 153-223
  • 18 Furuta Y, Kanazawa S, Takeda N. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539
  • 19 Frisch SM, Vuori K, Ruoslahti E. et al. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793-800
  • 20 Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol cell Biol 2005; 6: 56-68
  • 21 Choi H-S, Wang Z, Richmond W. et al. Design and synthesis of 7 H-pyrrolo [2, 3-d] pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorg Med Chem Lett 2006; 16: 2173-2176
  • 22 Choi H-S, Wang Z, Richmond W. et al. Design and synthesis of 7 H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 2. Bioorg Med Chem Lett 2006; 16: 2689-2692
  • 23 Huang H, Bhat A, Woodnutt G. et al. Targeting the ANGPT–TIE2 pathway in malignancy. Nat Rev Cancer 2010; 10: 575-585
  • 24 Cascone T, Heymach JV. Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword?. J Clin Oncol 2011; 30: 441-444
  • 25 Calderwood DJ, Johnston DN, Munschauer R. et al. Pyrrolo [2, 3-d] pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck. Bioorg Med Chem Lett 2002; 12: 1683-1686
  • 26 Burchat AF, Calderwood DJ, Friedman MM. et al. Pyrazolo [3, 4-d] pyrimidines containing an extended 3-substituent as potent inhibitors of Lck—a selectivity insight. Bioorg Med Chem Lett 2002; 12: 1687-1690
  • 27 Widler L, Green J, Missbach M. et al. 7-Alkyl-and 7-Cycloalkyl-5-aryl-pyrrolo [2, 3-d] pyrimidines—Potent Inhibitors of the Tyrosine Kinase c-Src. Bioorg Med Chem Lett 2001; 11: 849-852
  • 28 Hudkins RL, Becknell NC, Zulli AL. et al. Synthesis and biological profile of the pan-vascular endothelial growth factor receptor/tyrosine kinase with immunoglobulin and epidermal growth factor-like homology domains 2 (VEGF-R/TIE-2) inhibitor 11-(2-Methylpropyl)-12, 13-dihydro-2-methyl-8-(pyrimid. J Med Chem 2012; 55: 903-913
  • 29 Luke RWA, Ballard P, Buttar D. et al. Novel thienopyrimidine and thiazolopyrimidine kinase inhibitors with activity against Tie-2 in vitro and in vivo. Bioorg Med Chem Lett 2009; 19: 6670-6674
  • 30 Arcari JT, Beebe JS, Berliner MA. et al. Discovery and synthesis of novel 4-aminopyrrolopyrimidine Tie-2 kinase inhibitors for the treatment of solid tumors. Bioorg Med Chem Lett 2013; 23: 3059-3063
  • 31 Cohen P. Serum insulin-like growth factor-I levels and prostate cancer risk—interpreting the evidence.
  • 32 Papa V, Belfiore A. Insulin receptors in breast cancer: Biological and clinical role. J Endocrinol Invest 1996; 19: 324-333
  • 33 Moser C, Schachtschneider P, Lang SA. et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) using NVP-AEW541, a small molecule kinase inhibitor, reduces orthotopic pancreatic cancer growth and angiogenesis. Eur J Cancer 2008; 44: 1577-1586
  • 34 Rodon J, DeSantos V, Ferry RJ. et al. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: Lessons from the first clinical trials. Mol Cancer Ther 2008; 7: 2575-2588
  • 35 Chamberlain SD, Wilson JW, Deanda F. et al. Discovery of 4, 6-bis-anilino-1 H-pyrrolo [2, 3-d] pyrimidines: Potent inhibitors of the IGF-1 R receptor tyrosine kinase. Bioorg Med Chem Lett 2009; 19: 469-473
  • 36 Negi A, Ramarao P, Kumar R. Recent advancements in small molecule inhibitors of insulin–like growth factor-1 receptor (IGF-1 R) tyrosine kinase as anticancer agents. Mini Rev Med Chem 2013; 13: 653-681
  • 37 Sarma PKS, Tandon R, Gupta P. et al. Progress in the development of small molecule inhibitors of insulin-like growth factor-1 receptor kinase. Expert Opin Ther Pat 2007; 17: 25-35
  • 38 Puzanov I, Lindsay CR, Goff L. et al. Phase I, dose-escalation study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor receptor 1 and insulin receptor tyrosine kinases, in patients with advanced solid tumors. Clin Cancer Res 2015; 21: 701-711
  • 39 Mulvihill MJ, Buck E. The discovery of OSI-906, a small-molecule inhibitor of the insulin-like growth factor-1 and insulin receptors. In: Accounts in drug discovery 2010; pp 71-102
  • 40 Weisberg E, Nonami A, Chen Z. et al. Upregulation of IGF1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small-molecule inhibition of IGF1R. Clin Cancer Res 2014; 20: 5483-5495
  • 41 Suda K, Mizuuchi H, Sato K. et al. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int J cancer 2014; 135: 1002-1006
  • 42 Ioannou N, Seddon AM, Dalgleish A. et al. Treatment with a combination of the ErbB (HER) family blocker afatinib and the IGF-IR inhibitor, NVP-AEW541 induces synergistic growth inhibition of human pancreatic cancer cells. BMC Cancer 2013; 13: 41
  • 43 Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-293
  • 44 Liu Q, Thoreen C, Wang J. et al. mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg 2009; 6: 47-55
  • 45 Mortensen DS, Sapienza J, Lee BGS. et al. Use of core modification in the discovery of CC214-2, an orally available, selective inhibitor of mTOR kinase. Bioorg Med Chem Lett 2013; 23: 1588-1591
  • 46 Takeuchi CS, Kim BG, Blazey CM. et al. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR). J Med Chem 2013; 56: 2218-2234
  • 47 Liu KK-C, Bailey S, Dinh DM. et al. Conformationally-restricted cyclic sulfones as potent and selective mTOR kinase inhibitors. Bioorg Med Chem Lett 2012; 22: 5114-5117
  • 48 Finlay MRV, Buttar D, Critchlow SE. et al. Sulfonyl-morpholino-pyrimidines: SAR and development of a novel class of selective mTOR kinase inhibitor. Bioorg Med Chem Lett 2012; 22: 4163-4168
  • 49 Liu Q, Wang J, Kang SA. et al. Discovery of 9-(6-Aminopyridin-3-yl)-1-(3-(trifluoromethyl) phenyl) benzo [h][1, 6] naphthyridin-2 (1 H)-one (Torin2) as a Potent, Selective, and Orally Available Mammalian Target of Rapamycin (mTOR) Inhibitor for Treatment of Cancer. J Med Chem 2011; 54: 1473-1480
  • 50 Lee W, Ortwine DF, Bergeron P. et al. A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorg Med Chem Lett 2013; 23: 5097-5104
  • 51 Vetrie D, Vořechovský I, Sideras P. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993; 361: 226-233
  • 52 Tsukada S, Saffran DC, Rawlings DJ. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993; 72: 279-290
  • 53 Lou Y, Owens TD, Kuglstatter A. et al. Bruton’s tyrosine kinase inhibitors: Approaches to potent and selective inhibition, preclinical and clinical evaluation for inflammatory diseases and B cell malignancies. J Med Chem 2012; 55: 4539-4550
  • 54 Schnute ME, Huang A, Saiah E. Bruton’s Tyrosine Kinase (Btk). In: Anti-Inflammatory Drug Discovery. United Kingdom: RSC Publishing Inc. Southend-on-Sea; 2012. pp 297-326
  • 55 Zhao X, Huang W, Wang Y. et al. Discovery of novel Bruton’s tyrosine kinase (BTK) inhibitors bearing a pyrrolo [2, 3-d] pyrimidine scaffold. Bioorg Med Chem 2015; 23: 891-901
  • 56 Schenone S, Manetti F, Botta M. SRC inhibitors and angiogenesis. Curr Pharm Des 2007; 13: 2118-2128
  • 57 Roskoski R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res 2015; 94: 9-25
  • 58 Dincer S, Cetin KT, Onay-Besikci A. et al. Synthesis, biological evaluation and docking studies of new pyrrolo [2, 3-d] pyrimidine derivatives as Src family-selective tyrosine kinase inhibitors. J Enzyme Inhib Med Chem 2013; 28: 1080-1087
  • 59 Musumeci F, Fallacara AL, Brullo C. et al. Identification of new pyrrolo [2, 3-d] pyrimidines as Src tyrosine kinase inhibitors in vitro active against Glioblastoma. Eur J Med Chem 2017; 127: 369-378
  • 60 Mills GB, Schmandt R, McGill M. et al. Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem 1992; 267: 16000-16006
  • 61 Caldarelli M, Angiolini M, Disingrini T. et al. Synthesis and SAR of new pyrazolo [4, 3- h] quinazoline-3-carboxamide derivatives as potent and selective MPS1 kinase inhibitors. Bioorg Med Chem Lett 2011; 21: 4507-4511
  • 62 Kwiatkowski N, Jelluma N, Filippakopoulos P. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 2010; 6: 359-368
  • 63 Hewitt L, Tighe A, Santaguida S. et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex. J Cell Biol 2010; 190: 25-34
  • 64 Kusakabe K, Ide N, Daigo Y. et al. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125). J Med Chem 2013; 56: 4343-4356
  • 65 Bursavich MG, Dastrup D, Shenderovich M. et al. Novel Mps1 kinase inhibitors: from purine to pyrrolopyrimidine and quinazoline leads. Bioorg Med Chem Lett 2013; 23: 6829-6833
  • 66 Daniel J, Coulter J, Woo J-H. et al. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc Natl Acad Sci 2011; 108: 5384-5389
  • 67 Maire V, Baldeyron C, Richardson M. et al. TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One 2013; 8: e63712
  • 68 Schmandt R, Hill M, Amendola A. et al. IL-2-induced expression of TTK, a serine, threonine, tyrosine kinase, correlates with cell cycle progression. J Immunol 1994; 152: 96-105
  • 69 Wengner AM, Siemeister G, Koppitz M. et al. Novel Mps1 kinase inhibitors with potent antitumor activity. Mol Cancer Ther 2016; 15: 583-592
  • 70 Sugimoto Y, Sawant DB, Fisk HA. et al. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg Med Chem 2017; 25: 2156-2166
  • 71 Sherr CJ. Cancer cell cycles. Science (80- ) 1996; 274: 1672
  • 72 Samson K. LEE011 CDK inhibitor showing early promise in drugresistant cancers.
  • 73 Kim S, Loo A, Chopra R et al. Abstract PR02: LEE011: An orally bioavailable, selective small molecule inhibitor of CDK4/6–Reactivating Rb in cancer.
  • 74 Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care 2016; 11: 167-173
  • 75 Kisqali N. receives FDA approval as first-line treatment for HR + / HER2-metastatic breast cancer in combination with any aromatase inhibitor. Novartis News Release
  • 76 Peplow M. Astex shapes CDK4/6 inhibitor for approval.
  • 77 Le Brazidec J-Y, Pasis A, Tam B. et al. Structure-based design of 2, 6, 7-trisubstituted-7 H-pyrrolo [2, 3-d] pyrimidines as Aurora kinases inhibitors. Bioorg Med Chem Lett 2012; 22: 4033-4037
  • 78 Yang W, Cerione RA. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem 1997; 272: 24819-24824
  • 79 Yokoyama N, Miller WT. Purification and enzyme activity of ACK1. Methods Enzymol 2006; 406: 250-260
  • 80 Ureña JM, La Torre A, Martínez A. et al. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain. J Comp Neurol 2005; 490: 119-132
  • 81 Han W, Rhee H-I, Cho JW. et al. Overexpression of Arabidopsis ACK1 alters leaf morphology and retards growth and development. Biochem Biophys Res Commun 2005; 330: 887-890
  • 82 Van Der Horst EH, Degenhardt YY, Strelow A. et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A 2005; 102: 15901-15906
  • 83 Jiao X, Kopecky DJ, Liu J. et al. Synthesis and optimization of substituted furo [2, 3-d]-pyrimidin-4-amines and 7 H-pyrrolo [2, 3-d] pyrimidin-4-amines as ACK1 inhibitors. Bioorg Med Chem Lett 2012; 22: 6212-6217
  • 84 Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev 2009; 228: 273-287
  • 85 Leonard WJ, O’Shea JJ. Jaks and STATs: Biological implications. Annu Rev Immunol 1998; 16: 293-322
  • 86 Manning G, Whyte DB, Martinez R. et al. The protein kinase complement of the human genome. Science (80- ) 2002; 298: 1912-1934
  • 87 O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012; 36: 542-550
  • 88 Gonzales AJ, Bowman JW, Fici GJ. et al. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther 2014; 37: 317-324
  • 89 Deisseroth A, Kaminskas E, Grillo J. et al. US Food and Drug Administration approval: ruxolitinib for the treatment of patients with intermediate and high-risk myelofibrosis. Clin Cancer Res 2012; 18: 3212-3217
  • 90 Flanagan ME, Blumenkopf TA, Brissette WH. et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 2010; 53: 8468-8484
  • 91 Schwartz DM, Bonelli M, Gadina M et al. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol
  • 92 Kubler P. Janus kinase inhibitors: Mechanisms of action. Aust Prescr 37:
  • 93 Lee S-M, Bin YK, Lee HJ. et al. The discovery of 2, 5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 2 (JAK2) inhibitors versus JAK1 and JAK3. Bioorg Med Chem 2016; 24: 5036-5046
  • 94 Peifer C, Alessi DR. Small-Molecule Inhibitors of PDK1. ChemMedChem 2008; 3: 1810-1838
  • 95 Murphy ST, Alton G, Bailey S. et al. Discovery of novel, potent, and selective inhibitors of 3-phosphoinositide-dependent kinase (PDK1). J Med Chem 2011; 54: 8490-8500
  • 96 O’Brien NJ, Brzozowski M, Wilson DJD. et al. Synthesis and biological evaluation of substituted 2-anilino-7 H-pyrrolopyrimidines as PDK1 inhibitors. Tetrahedron 2014; 70: 4947-4956
  • 97 O’Brien NJ, Brzozowski M, Buskes MJ. et al. Synthesis and biological evaluation of 2-anilino-4-substituted-7 H-pyrrolopyrimidines as PDK1 inhibitors. Bioorg Med Chem 2014; 22: 3879-3886
  • 98 Yap TA, Garrett MD, Walton MI. et al. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 2008; 8: 393-412
  • 99 Mattmann ME, Stoops SL, Lindsley CW. Inhibition of Akt with small molecules and biologics: Historical perspective and current status of the patent landscape. Expert Opin Ther Pat 2011; 21: 1309-1338
  • 100 Hirai H, Sootome H, Nakatsuru Y. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 2010; 9: 1956-1967
  • 101 Blake JF, Xu R, Bencsik JR. et al. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J Med Chem 2012; 55: 8110-8127
  • 102 Pal SK, Reckamp K, Yu H. et al. Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs 2010; 19: 1355-1366
  • 103 Yap TA, Walton MI, Hunter L-JK et al. Preclinical pharmacology, antitumor activity and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930. Mol Cancer Ther 2010 molcanther-0760
  • 104 McHardy T, Caldwell JJ, Cheung K-M. et al. Discovery of 4-amino-1-(7 H-pyrrolo [2, 3-d] pyrimidin-4-yl) piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt). J Med Chem 2010; 53: 2239-2249
  • 105 Caldwell JJ, Davies TG, Donald A. et al. Identification of 4-(4-aminopiperidin-1-yl)-7 H-pyrrolo [2, 3-d] pyrimidines as selective inhibitors of protein kinase B through fragment elaboration. J Med Chem 2008; 51: 2147-2157
  • 106 Addie M, Ballard P, Buttar D. et al. Discovery of 4-Amino-N-[(1 S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7 H-pyrrolo [2, 3-d] pyrimidin-4-yl) piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases. J Med Chem 2013; 56: 2059-2073
  • 107 Traxler P. Tyrosine kinases as targets in cancer therapy–successes and failures. Expert Opin Ther Targets 2003; 7: 215-234
  • 108 Traxler P, Allegrini PR, Brandt R. et al. AEE788. Cancer Res 2004; 64: 4931-4941
  • 109 Park YW, Younes MN, Jasser SA. et al. AEE788, a dual tyrosine kinase receptor inhibitor, induces endothelial cell apoptosis in human cutaneous squamous cell carcinoma xenografts in nude mice. Clin cancer Res 2005; 11: 1963-1973
  • 110 LoRusso P, Venkatakrishnan K, Chiorean EG. et al. Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2. Invest New Drugs 2014; 32: 160-170
  • 111 Doi T, Takiuchi H, Ohtsu A. et al. Phase I first-in-human study of TAK-285, a novel investigational dual HER2/EGFR inhibitor, in cancer patients. Br J Cancer 2012; 106: 666-672
  • 112 Kaspersen SJ, Han J, Nørsett KG. et al. Identification of new 4- N-substituted 6-aryl-7 H-pyrrolo [2, 3-d] pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur J Pharm Sci 2014; 59: 69-82
  • 113 Schuster D, Laggner C, Langer T. Why drugs fail-a study on side effects in new chemical entities. Curr Pharm Des 2005; 11: 3545-3559
  • 114 Segall MD, Beresford AP, Gola JMR. et al. Focus on success: using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery. Expert Opin Drug Metab Toxicol 2006; 2: 325-337
  • 115 Sundby E, Han J, Kaspersen SJ. et al. In vitro baselining of new pyrrolopyrimidine EGFR-TK inhibitors with Erlotinib. Eur J Pharm Sci 2015; 80: 56-65
  • 116 Han J, Henriksen S, Nørsett KG. et al. European Journal of Medicinal Chemistry Balancing potency, metabolic stability and permeability in pyrrolopyrimidine-based EGFR inhibitors. Eur J Med Chem 2016; 124: 583-607
  • 117 Zhang J, Shan Y, Pan X. et al. Recent advances in antiangiogenic agents with VEGFR as target. Mini Rev Med Chem 2011; 11: 920-946
  • 118 Oguro Y, Miyamoto N, Okada K. et al. Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5 H-pyrrolo [3, 2-d] pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation. Bioorg Med Chem 2010; 18: 7260-7273
  • 119 Sun L, McMahon G. Inhibition of tumor angiogenesis by synthetic receptor tyrosine kinase inhibitors. Drug Discov Today 2000; 5: 344-353
  • 120 Shauver L, Lipson K, Fong T et al. The New Angiotherapy. . Fan, T.; Kohn, E., editors
  • 121 Herbst RS, Fukuoka M, Baselga J. Gefitinib—a novel targeted approach to treating cancer. Nat Rev Cancer 2004; 4: 979-987
  • 122 Goldman ID, Zhao R. Molecular, biochemical, and cellular pharmacology of pemetrexed. In: Seminars in oncology. Elsevier; 2002. pp 3-17
  • 123 Folkman J. Angiogenesis. Annu Rev Med 2006; 57: 1-18
  • 124 Rak J, Joanne LY, Klement G. et al Oncogenes and angiogenesis: Signaling three-dimensional tumor growth. In: Journal of Investigative Dermatology Symposium Proceedings. Elsevier; 2000. pp 24-33
  • 125 Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7: 2958-2970
  • 126 Levitzki A. Protein kinase inhibitors as a therapeutic modality. Acc Chem Res 2003; 36: 462-469
  • 127 Sandler A, Herbst R. Combining targeted agents: blocking the epidermal growth factor and vascular endothelial growth factor pathways. Clin Cancer Res 2006; 12: 4421s-4425s
  • 128 Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: Targeting multiple signaling pathways with kinase inhibitors. In: Seminars in oncology. Elsevier; 2006. pp 407-420
  • 129 Gangjee A, Yang J, Ihnat MA. et al. Antiangiogenic and antitumor agents: Design, synthesis, and evaluation of novel 2-amino-4-(3-bromoanilino)-6-benzylsubstituted pyrrolo [2, 3-d] pyrimidines as inhibitors of receptor tyrosine kinases. Bioorg Med Chem 2003; 11: 5155-5170
  • 130 Gangjee A. Multiple acting anti-angiogenic and cytotoxic compounds and methods for using the same.
  • 131 Gangjee A, Namjoshi OA, Yu J. et al. Design, synthesis and biological evaluation of substituted pyrrolo [2, 3-d] pyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg Med Chem 2008; 16: 5514-5528
  • 132 Gangjee A, Kurup S, Ihnat MA. et al. Synthesis and biological activity of N 4-phenylsubstituted-6-(2, 4-dichloro phenylmethyl)-7 H-pyrrolo [2, 3-d] pyrimidine-2, 4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic and antitumor agents. Bioorg Med Chem 2010; 18: 3575-3587
  • 133 Casanovas O, Hicklin DJ, Bergers G. et al Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299-309
  • 134 Oguro Y, Miyamoto N, Takagi T. et al. N-Phenyl-N′-[4-(5 H-pyrrolo [3, 2-d] pyrimidin-4-yloxy) phenyl] ureas as novel inhibitors of VEGFR and FGFR kinases. Bioorg Med Chem 2010; 18: 7150-7163
  • 135 Gangjee A, Namjoshi OA, Yu J. et al. N 2-Trimethylacetyl substituted and unsubstituted-N 4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7 H-pyrrolo [2, 3-d] pyrimidine-2, 4-diamines: Design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimet. Bioorg Med Chem 2013; 21: 1312-1323