Planta Med 2018; 84(09/10): 716-720
DOI: 10.1055/s-0044-100524
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

New Tirucallane-Type Triterpenoids from Guarea guidonia

Vanessa Hernandez
1   Departamento de Farmacognosia y Medicamentos Organicos, Universidad de los Andes, Mérida, Venezuela
,
Marinella De Leo
2   Dipartimento di Farmacia, Università di Pisa, Italy
3   Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute,” Università di Pisa, Italy
,
Roberta Cotugno
4   Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
,
Alessandra Braca
2   Dipartimento di Farmacia, Università di Pisa, Italy
3   Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute,” Università di Pisa, Italy
,
Nunziatina De Tommasi
4   Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
,
Lorella Severino
5   Dipartimento di Medicina Veterinaria e Produzione Animale, Università di Napoli Federico II, Napoli, Italy
› Author Affiliations
Further Information

Publication History

received 13 November 2017
revised 22 December 2017

accepted 04 January 2018

Publication Date:
16 January 2018 (online)

Abstract

The aerial parts of Guarea guidonia afforded three new tirucallane-type triterpenoids: 3,4-seco-tirucalla-4(28),8(9),24(25)-trien-7α,11α-dihydroxy-21,23-epoxy-3,11-olide, named guareolide (1), 3,4-seco-tirucalla-4(28),7(8),24(25)-trien-21-hydroxy-21,23-epoxy-3-oic acid, named guareoic acid A (2), and 3,4-seco-tirucalla-4(28),7(8),24(25)-trien-21,23-epoxy-3-oic acid, named guareoic acid B (3), of which 1 possessed an unusual seven-membered lactone ring. Seven known terpenes were also isolated and characterized as flindissone, 7-acetyldihydronomilin, picroquassin E, boscartol C, and cneorubins A, B, and X. Their structures were determined by spectroscopic methods including one-dimensional and two-dimensional nuclear magnetic resonance analysis and high-resolution mass spectrometry. The isolates were investigated for their potential cytotoxic activity on Jurkat, HeLa, and MCF7 cancer cell lines. Flindissone and compound 2 showed an antiproliferative activity in all cell lines. Further studies revealed that flindissone, the most active compound, induced in Jurkat and HeLa cells both cytostatic and cytotoxic responses.

Supporting Information

 
  • References

  • 1 Aristeguieta L. Familias y géneros de los árboles de Venezuela. Edición special del Instituto botánico. Caracas: 1973: 841
  • 2 Oga S, Sertié JA, Brasile AC, Hanada S. Antiinflammatory effect of crude extract from Guarea guidonia . Planta Med 1981; 42: 310-312
  • 3 Garcez FR, Nuñez CV, Garcez WS, Almeida RM, Roque NF. Sesquiterpenes, limonoid and coumarin from the wood bark of Guarea guidonia . Planta Med 1998; 64: 79-80
  • 4 Lago JHG, Brochini CB, Roque NF. Terpenoids from Guarea guidonia . Phytochemistry 2002; 60: 333-338
  • 5 Dal Piaz F, Malafronte N, Romano A, Gallotta D, Belisario MA, Bifulco G, Gualtieri MJ, Sanogo R, De Tommasi N, Pisano C. Structural characterization of tetranortriterpenes from Pseudrocedrela kotschyi and Trichilia emetica and study of their activity towards the chaperone Hsp90. Phytochemistry 2012; 75: 78-89
  • 6 Gualtieri MJ, Malafronte N, Vassallo A, Braca A, Cotugno R, Vasaturo M, De Tommasi N, Dal Piaz F. Bioactive limonoids from the leaves of Azadirachta indica (Neem). J Nat Prod 2014; 77: 596-602
  • 7 Kamperdick C, Lien TP, Adam G, Sung TV. Apotirucallane and tirucallane triterpenoids from Luvunga sarmentosa . J Nat Prod 2003; 66: 675-678
  • 8 Zheng Q, Guan B, Qin JJ, Wang CH, Cheng XR, Ren J, Yan SK, Jin HZ, Zhang WD. 2, 3-seco- and 3, 4-seco-tirucallane triterpenoid derivatives from the stems of Aphanamixis grandifolia Blume. Phytochemistry 2012; 80: 148-155
  • 9 Kim KH, Choi SU, Kim YC, Lee KR. Tirucallane triterpenoids from Cornus walteri . J Nat Prod 2011; 74: 54-59
  • 10 Guang-Yi L, Gray AI, Waterman PG. Chemistry of the Burseraceae. Part 9. Tirucallane and oleanane triterpenes from the resin of Aucoumea klaineana . Phytochemistry 1988; 27: 2283-2286
  • 11 Ahmed FR, Ng AS, Fallis AG. 7α-Acetoxydihydronomilin: isolation, spectra, and crystal structure. Can J Chem 1978; 56: 1020-1025
  • 12 Xu J, Xiao D, Lin QH, He JF, Liu WY, Xie N, Feng F, Qu W. Cytotoxic tirucallane and apotirucallane triterpenoids from the stems of Picrasma quassioides . J Nat Prod 2016; 79: 1899-1910
  • 13 Wang YG, Ren J, Wang AG, Yang JB, Ji TF, Ma QG, Tian J, Su YL. Hepatoprotective prenylaromadendrane-type diterpenes from the gum resin of Boswellia carterii . J Nat Prod 2013; 76: 2074-2079
  • 14 Brochini CB, Roque NF. Two new cneorubin related diterpenes from the leaves of Guarea guidonia (Meliaceae). J Braz Chem Soc 2000; 11: 361-364
  • 15 De Leo M, Peruzzi L, Granchi C, Tuccinardi T, Minutolo F, De Tommasi N, Braca A. Constituents of Polygala flavescens ssp. flavescens and their activity as inhibitors of human lactate dehydrogenase. J Nat Prod 2017; 80: 2077-2087
  • 16 Jimenez-Usuga N, Malafronte N, Cotugno R, De Leo M, Osorio E, De Tommasi N. New sesquiterpene lactones from Ambrosia cumanensis Kunth. Fitoterapia 2016; 113: 170-174