CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2024; 34(03): 496-510
DOI: 10.1055/s-0043-1778651
Review Article

Demystifying the Radiography of Age Estimation in Criminal Jurisprudence: A Pictorial Review

Vritika Bhardwaj*
1   Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
Ishan Kumar*
1   Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
Priyanka Aggarwal
2   Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
Pramod Kumar Singh
1   Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
1   Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
1   Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
› Author Affiliations


Skeletal radiographs along with dental examination are frequently used for age estimation in medicolegal cases where documentary evidence pertaining to age is not available. Wrist and hand radiographs are the most common skeletal radiograph considered for age estimation. Other parts imaged are elbow, shoulder, knee, and hip according to suspected age categories. Age estimation by wrist radiographs is usually done by the Tanner-Whitehouse method where the maturity level of each bone is categorized into stages and a final total score is calculated that is then transformed into the bone age. Careful assessment and interpretation at multiple joints are needed to minimize the error and categorize into age-group. In this article, we aimed to summarize a suitable radiographic examination and interpretation for bone age estimation in living children, adolescents, young adults, and adults for medicolegal purposes.

* V.B. and I.K. are first coauthors as their contribution is equal.

Publication History

Article published online:
27 January 2024

© 2024. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

  • References

  • 1 Parikh CK. Parikh's Textbook of Medical Jurisprudence, Forensic Medicine and Toxicology, for Classrooms and Courtrooms. 6th ed.. C. B. S.; 2007
  • 2 Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford: Stanford University Press; 1959: 272
  • 3 Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJ, Goldstein H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 method). London: Academic Press; 1983
  • 4 Tanner J, Oshman D, Bahhage F, Healy M. Tanner-Whitehouse bone age reference values for North American children. J Pediatr 1997; 131 (1 Pt 1): 34-40
  • 5 Schmeling A, Geserick G, Reisinger W, Olze A. Age estimation. Forensic Sci Int 2007; 165 (2-3): 178-181
  • 6 Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G. Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 2000; 113 (05) 253-258
  • 7 Roche AF, Roberts J, Hamill PV. Skeletal maturity of youths 12–17 years racial, geographic area, and socioeconomic differentials. United States, 1966-1970. Vital Health Stat 11 1978; (167) 1-98
  • 8 Modi R. A Textbook of Medical Jurisprudence and Toxicology. In: 6th ed. Bombay: 1940: 32-45
  • 9 Pinchi V, De Luca F, Ricciardi F. et al. Skeletal age estimation for forensic purposes: a comparison of GP, TW2 and TW3 methods on an Italian sample. Forensic Sci Int 2014; 238: 83-90
  • 10 Reddy KSN. The Essentials of Forensic Medicine and Toxicology. In: 32nd ed. Hyderabad: Om Sai Graphics; 2013: 61-62
  • 11 Shah N, Khadilkar V, Lohiya N. et al. Comparison of bone age assessments by Gruelich-Pyle, Gilsanz-Ratib, and Tanner Whitehouse methods in healthy Indian children. Indian J Endocrinol Metab 2021; 25 (03) 240-246
  • 12 Behera CK, Rath R, Das SN, Sahu G, Sharma G, Bhatta A. Correlation of skeletal age by Greulich-Pyle atlas, physiological age by body development index, and dental age by London Atlas and modified Demirjian's technique in children and adolescents of an Eastern Indian population. Egypt J Forensic Sci 2023; 13 (01) 40
  • 13 Tanner JM, Healy MJR, Goldstein H, Cameron N. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 method). 3rd edition. London, UK: Saunders; 2001
  • 14 Gilsanz V, Ratib O. Hand Bone Age: A Digital Atlas of Skeletal Maturity. Springer; 2011
  • 15 Smt. Meenakshi and Another vs the State of U.P. 2020
  • 16 Jones VF, High PC, Donoghue E. et al; Committee On Early Childhood, Adoption, And Dependent Care. Comprehensive health evaluation of the newly adopted child. Pediatrics 2012; 129 (01) e214-e223
  • 17 Convention on the Rights of the Child. United Nations, New York: 1989
  • 18 Committee on the Rights of the Child. United Nations, Geneva: 2007
  • 19 Buckberry JL, Chamberlain AT. Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 2002; 119 (03) 231-239
  • 20 Priyambhai Bipinbhai Mehta v. The State Of Gujarat. 2009.
  • 21 Hacquebord JH, Leopold SS. In brief: The Risser classification: a classic tool for the clinician treating adolescent idiopathic scoliosis. Clin Orthop Relat Res 2012; 470 (08) 2335-2338
  • 22 Kanchal Lal Juvenile vs State of U.P. & Another. 2015
  • 23 Rockwood C, Beaty J, Kasser J. Rockwood and Wilkins' Fractures in Children. 6th edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2005
  • 24 Eich GF, Babyn P, Giedion A. Pediatric pelvis: radiographic appearance in various congenital disorders. Radiographics 1992; 12 (03) 467-484
  • 25 Zember JS, Rosenberg ZS, Kwong S, Kothary SP, Bedoya MA. Normal skeletal maturation and imaging pitfalls in the pediatric shoulder. Radiographics 2015; 35 (04) 1108-1122
  • 26 M Mohamed Abbas v. The Chief Secretary. 2015
  • 27 Pradeep Kumar Bhardwaj v. The State of UP. 1998
  • 28 Kishan Dashrath Tambile and Another v. The State of Maharashtra and Another. 2021
  • 29 Babloo v. State. 2011.
  • 30 Cunningham C, Scheuer L, Black S. Developmental Juvenile Osteology. San Diego, CA: Academic Press; 2000
  • 31 Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 2010; 124 (04) 321-325
  • 32 Rami Bai v. Life Insurance Corporation of India. 1980.
  • 33 Mukherjee JB, Karmakar RNJB. Mukherjee's Forensic Medicine and Toxicology. In: 3rd ed. Kolkata: Academic Publishers; 2007: 156-157
  • 34 Sahni D, Jit I. , Neelam, Sanjeev Time of closure of cranial sutures in northwest Indian adults. Forensic Sci Int 2005; 148 (2-3): 199-205
  • 35 Jayaraman J. Dental age estimation in India: do we have a role beyond publishing scientific evidences?. J Forensic Dent Sci 2018; 10 (01) 55-57
  • 36 Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol 1973; 45 (02) 211-227
  • 37 Bajpai A. Who is a child?. Cent Commun Dev Stud. 2007; (08) 8-11
  • 38 Santoro V, De Donno A, Marrone M, Campobasso CP, Introna F. Forensic age estimation of living individuals: a retrospective analysis. Forensic Sci Int 2009; 193 (1-3): 129.e1-129.e4
  • 39 Shimura N, Koyama S, Arisaka O, Imataka M, Sato K, Matsuura M. Assessment of measurement of children's bone age ultrasonically with sunlight bon age. Clin Pediatr Endocrinol 2005; 14 (24) 17-20
  • 40 Khan KM, Miller BS, Hoggard E, Somani A, Sarafoglou K. Application of ultrasound for bone age estimation in clinical practice. J Pediatr 2009; 154 (02) 243-247
  • 41 Tanner JM, Gibbons RD. Automatic bone age measurement using computerized image analysis. J Pediatr Endocrinol Metab 1994; 7 (02) 141-145
  • 42 Drayer NM, Cox LA. Assessment of bone ages by the Tanner-Whitehouse method using a computer-aided system. Acta Paediatr Suppl 1994; 406 (s406): 77-80
  • 43 Tanner JM, Oshman D, Lindgren G, Grunbaum JA, Elsouki R, Labarthe D. Reliability and validity of computer-assisted estimates of Tanner-Whitehouse skeletal maturity (CASAS): comparison with the manual method. Horm Res 1994; 42 (06) 288-294
  • 44 Frisch H, Riedl S, Waldhör T. Computer-aided estimation of skeletal age and comparison with bone age evaluations by the method of Greulich-Pyle and Tanner-Whitehouse. Pediatr Radiol 1996; 26 (03) 226-231
  • 45 Schmeling A, Grundmann C, Fuhrmann A. et al. Criteria for age estimation in living individuals. Int J Legal Med 2008; 122 (06) 457-460
  • 46 European Commission. Joint Research Centre. Medical age assessment of juvenile migrants. [Internet]. LU: Publications Office; 2018 [cited 2023 Sep 28]. Available at:
  • 47 Terada Y, Kono S, Tamada D. et al. Skeletal age assessment in children using an open compact MRI system. Magn Reson Med 2013; 69 (06) 1697-1702
  • 48 Terada Y, Kono S, Uchiumi T. et al. Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet. Magn Reson Med Sci 2014; 13 (03) 215-219
  • 49 Obuchowicz R, Nurzynska K, Pierzchala M, Piorkowski A, Strzelecki M. Texture analysis for the bone age assessment from MRI images of adolescent wrists in boys. J Clin Med 2023; 12 (08) 2762
  • 50 Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R. Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 2007; 121 (04) 321-324
  • 51 Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K. Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 2011; 21 (04) 757-767
  • 52 De Tobel J, Bauwens J, Parmentier GIL. et al. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 2020; 50 (12) 1691-1708
  • 53 Möbius D, Fitzek A, Hammer N. et al. Ultrasound in legal medicine-a missed opportunity or simply too late? A narrative review of ultrasonic applications in forensic contexts. Int J Legal Med 2021; 135 (06) 2363-2383
  • 54 Herrmann J, Säring D, Auf der Mauer M, Groth M, Jopp-van Well E. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI. Eur Radiol 2021; 31 (05) 3237-3247
  • 55 Ekizoglu O, Er A, Bozdag M, Moghaddam N, Grabherr S. Forensic age estimation based on fast spin-echo proton density (FSE PD)-weighted MRI of the distal radial epiphysis. Int J Legal Med 2021; 135 (04) 1611-1616
  • 56 Serin J, Rérolle C, Pucheux J. et al. Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 2016; 130 (04) 1121-1128
  • 57 Uygun B, Kaya K, Köse S, Ekizoğlu O, Hilal A. Applicability of magnetic resonance imaging of the knee in forensic age estimation. Am J Forensic Med Pathol 2021; 42 (02) 147-154
  • 58 Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol 2017; 27 (12) 5041-5048
  • 59 Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Sci Int 2016; 260: 102.e1-102.e7
  • 60 Vieth V, Schulz R, Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol 2018; 28 (08) 3255-3262
  • 61 Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N. Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 2012; 217 (1-3): 232.e1-232.e7
  • 62 Saint-Martin P, Rérolle C, Dedouit F. et al. Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 2013; 127 (05) 1023-1030
  • 63 Lu T, Shi L, Zhan MJ. et al. Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population. Int J Legal Med 2020; 134 (05) 1843-1852
  • 64 Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG. Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 2015; 129 (04) 825-831
  • 65 Lopatin O, Barszcz M, Bolechala F, Wozniak KJ. The fusion of ossification centers - a comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Leg Med (Tokyo) 2023; 61: 102185
  • 66 Matijaš T, Pinjuh A, Dolić K. et al. Improving the age estimation efficiency by calculation of the area ratio index using semi-automatic segmentation of knee MRI images. Biomedicines 2023; 11 (07) 2046
  • 67 Lee BD, Lee MS. Automated bone age assessment using artificial intelligence: the future of bone age assessment. Korean J Radiol 2021; 22 (05) 792-800
  • 68 Booz C, Yel I, Wichmann JL. et al. Artificial intelligence in bone age assessment: accuracy and efficiency of a novel fully automated algorithm compared to the Greulich-Pyle method. Eur Radiol Exp 2020; 4 (01) 6
  • 69 Kim JR, Shim WH, Yoon HM. et al. Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. Am J Roentgenol 2017; 209 (06) 1374-1380
  • 70 Son SJ, Song Y, Kim N. et al. TW3-based fully automated bone age assessment system using deep neural networks. IEEE Access 2019; 7: 33346-33358
  • 71 Bui TD, Lee JJ, Shin J. Incorporated region detection and classification using deep convolutional networks for bone age assessment. Artif Intell Med 2019; 97: 1-8
  • 72 Nguyen T, Hermann AL, Ventre J. et al. High performance for bone age estimation with an artificial intelligence solution. Diagn Interv Imaging 2023; 104 (7-8): 330-336