Semin Thromb Hemost 2024; 50(01): 131-147
DOI: 10.1055/s-0043-1776311
Historical Paper

The Molecular Structure of Fibrinogen[*]

Genesio Murano
1   Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
› Author Affiliations

Abstract

Seminars in Thrombosis and Hemostasis (STH) celebrates 50 years of publishing in 2024. To celebrate this landmark event, STH is republishing some archival material. This manuscript represents the first full paper ever published in STH. The manuscript published without an abstract, and essentially covered in considerable detail the molecular structure of fibrinogen, as was known at that time. Fittingly, it covers some historical perspectives, the physicochemical properties and structure of fibrinogen across several species of animals (including humans) and its transformation into fibrin. We hope the readers of STH enjoy this journey into the past. This manuscript is accompanied by a Commentary that reflects on this past, as well as the journey towards contemporary understanding of the molecular structure of fibrinogen. As this is a republication of archival material, transformed into a modern format, we apologise in advance for any errors introduced during this transformation.

* The molecular weights of the three chain fragments[143] [148] were estimated at Aα/- = 6,000; Bβ)/- = 12,500; γ/- = 11,500. Therefore, in agreement with the figure of 58,000 obtained for intact (dimeric) N-DSK,[151] the minimum molecular weight for N-DSK (monomeric) is ∼29,000.


** The Aα/-chain has alanine as the N-terminal residue, the A Yα/-chain variant is one amino acid residue shorter from the amino terminal (alanine is missing); the APα/-chain variant has the same sequence as Aα/-chain, except for residue number three, which is phosphoserine in place of serine; the AYPa/-chain variant has a serine phosphate in position 2 of the AYα/-chain. The slash (/) indicates degradation at a C-terminal position.


* This article is a republished version of: Murano G. The molecular structure of Fibrinogen. Semin Thromb Hemost 1974;1:1–31




Publication History

Article published online:
24 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Morawitz P. Die Chemie der Blutgerinnung. Ergeb Physiol 1905; 4: 307-422
  • 2 Bang NU, Beller FK, Deutsch E, Mammen EF. eds. Thrombosis and Bleeding Disorders. Stuttgart: Thieme Verlag; 1971: 1-554
  • 3 Laki K. ed. Fibrinogen. New York: Marcel Dekker, Inc.; 1968: 1-398
  • 4 Seegers WH. Prothrombin. Cambridge, MA: Harvard University Press; 1962: 1-728
  • 5 Seegers WH. ed. Blood Clotting Enzymology. New York, London: Academic Press; 1967: 1-628
  • 6 Malpighi M. De Polypo Cordis Dissertatio. London: Opera Omnia; 1686
  • 7 Hewson W. An Experimental Inquiry into the Properties of the Blood. London: Thomas Cadell; 1772
  • 8 Hunter J. A Treatise on the Blood, Inflammation, and Gunshot Wounds. London: G Nicoll; 1794
  • 9 Home E. On the changes the blood undergoes in the act of coagulation. Philos Trans R Soc Lond 1818; 108: 172-184
  • 10 Hayem G. Du Sang et de ses Alterations Anatomiques. London: Masson; 1889
  • 11 Burker K. Blutplättchen und Blutgerinnung. Pflugers Arch 1904; 102: 36-94
  • 12 Müller J. Beobachtungen zur Analyse der Lymphe, des Blutes und des Chylus. Poggend Annal 1832; 25: 513-590
  • 13 Buchanan A. On the coagulation of the blood and other fibriniferous fluids. London Med Gaz 1845; 1: 617-647
  • 14 Virchow R. Ueber den Faserstoff (1845–1846). In: Gesammelte Abhandlungen zur Wissenschaftlichen Medizin. Frankfurt am Main: 1856
  • 15 Denis-DeCommercy PS. Mémoire sur Ie Sang. Paris: J.B. Ballièrc et Fils; 1859
  • 16 Hammarsten O. Undorsokuingar of S. K. Fibringeneratorerna, Fibrinet Saint Fibrinogenets Koagulation. Upsala Läkareförenings Förh 1876; 11: 538-579
  • 17 Hammarsten O. Ueber das Fibrinogen. Pflugers Arch 1879; 19: 563-622
  • 18 Hammarsten O. Ueber das Fibrinogen. Pflugers Arch 1880; 22: 431-502
  • 19 Arthus M, Pagés C. Nouvelle theorie chimique de la coagulation du sang. Arch Physiol Norm Pathol 1890; 22: 739-746
  • 20 Pekelharing CA. Ueber die Bedeutung der Kalksalze für die Gerinnung des Blutes. Intern Beitr Wiss Med 1891; 1: 433-456 (Festschrift R Virchow)
  • 21 Hammarsten O. Ueber die Bedeutung der Iöslichen Kalksalze für die Faserstoffgerinnung. Hoppe Seylers Z Physiol Chem 1896; 22: 333-395
  • 22 Seegers WH, Smith HP. Factors which influence the activity of purified thrombin. Am J Physiol 1942; 137: 348-354
  • 23 Schmidt A. Ueber den Faserstoff und die Ursachen seiner Gerinnung. Arch Anat Physiol 1861
  • 24 Schmidt A. Ueber die Beziehung des Kochsalzes zu einigen thierischen Fermentations- prozessen. Pflugers Arch 1876; 13: 93-146
  • 25 Huiscamp W. Zur Fibrinoglobulinfrage. Hoppe Seylers Z Physiol Chem 1905; 44: 182-197
  • 26 Heubner W. Die Spaltung des Fibrinogens bei der Fibringerinnung. Arch Exp Path Pharm 1903; 49: 229-243
  • 27 Mellanby J. The coagulation of blood. J Physiol 1908; 38 (01) 28-112
  • 28 Mellanby J. The Coagulation of blood: Part II. The actions of snake venoms, peptone and leech extract. J Physiol 1909; 38 (06) 441-503
  • 29 Waldschmidt-Leitz EP, Steigerwaldt SF. Zur Theorie der Bhutgerinnung. Naturwissenschaften 1928; 16: 1027
  • 30 Fuchs HJ, Zakrzewski Z. Mikrokemische Analyse von beim Blutgerinnungsprozess ablaufenden Teilreaktionen. Klin Wochenschr 1934; 13: 1511
  • 31 Eagle H, Harris TN. Studies in blood coagulation: coagulation of blood by proteolytic enzymes (trypsin, papain). J Gen Physiol 1937; 20 (04) 543-560
  • 32 Laki K, Mommaerts WFHM. Transition of fibrinogen to fibrin as a two-step reaction. Nature 1945; 156: 664
  • 33 Laki K. The polymerization of proteins; the action of thrombin on fibrinogen. Arch Biochem Biophys 1951; 32 (02) 317-324
  • 34 Laki K. The clotting of fibrinogen. Blood 1953; 8 (09) 845-856
  • 35 Lorand L. Fibrino-peptide. Biochem J 1952; 52 (02) 200-203
  • 36 Kowarzyk H. Thrombin and thrombin-protease. Nature 1952; 169 (4302) 614-615
  • 37 Mihalyi E. Electrophoretic investigations of fibrin and fibrinogen dissolved in urea solutions. Acta Chem Scand 1950; 4: 351-358
  • 38 Bailey K, Bettelheim FR, Lorand L, Middlebrook WR. Action of thrombin in the clotting of fibrinogen. Nature 1951; 167 (4241) 233-234
  • 39 Dayhoff MO. ed. Atlas of Protein Sequence and Structure, Vol. 5. Washington, DC: National Biomedical Research Foundation; 1972: D-87-D-97
  • 40 Doolittle RF, Oncley JL, Surgenor DM. Species differences in the interaction of thrombin and fibrinogen. J Biol Chem 1962; 237: 3123-3127
  • 41 Doolittle RF. Characterization of lamprey fibrinopeptides. Biochem J 1965; 94 (03) 742-750
  • 42 Osbahr AJ, Gladner JA, Laki K, Irreverre F. Species interaction in the fibrinogen-fibrin conversion. Nature 1964; 201: 707-708
  • 43 Blombäck B. Fibrinogen to fibrin transformation. In: Seegers WH. ed., Blood Clotting Enzymology. New York: Academic Press; 1967: 143-215
  • 44 Blombäck B, Blombäck M. Purification of human and bovine fibrinogen. Ark Kemi 1956; 10: 415-443
  • 45 Morrison PR, Edsall JT, Miller SG. Preparation and properties of serum and plasma proteins; the separation of purified fibrinogen from fraction I of human plasma. J Am Chem Soc 1948; 70 (09) 3103-3108
  • 46 Mosesson MWN, Alkjaersig N, Sweet B, Sherry S. Human fibrinogen of relatively high solubility. Comparative biophysical, biochemical, and biological studies with fibrinogen of lower solubility. Biochemistry 1967; 6 (10) 3279-3287
  • 47 Seegers WH, Nieft ML, Vandenbelt JM. Decomposition products of fibrinogen and fibrin. Arch Biochem 1945; 7: 15-19
  • 48 Ware AG, Guest MM, Seegers WH. Fibrinogen; with special reference to its preparation and certain properties of the product. Arch Biochem 1947; 13 (02) 231-236
  • 49 Mosesson MW, Umfleet RA. The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem 1970; 245 (21) 5728-5736
  • 50 Blombäck B, Blombäck M, Edman P, Hessel B. Human fibrinopeptides. Isolation, characterization and structure. Biochim Biophys Acta 1966; 115 (02) 371-396
  • 51 Finlayson JS, Mosesson MW. Heterogeneity of human fibrinogen. Biochemistry 1963; 2: 42-46
  • 52 Wuppermann T, Hörmann H. Bovine fibrinogen of relatively high solubility: characterization of fraction I-9. Hoppe Seylers Z Physiol Chem 1971; 352 (08) 1171-1173
  • 53 Gaffney PJ. Heterogeneity of human fibrinogen. Nat New Biol 1971; 230 (10) 54-56 (New Biol)
  • 54 Mills D, Karpatkin S. Heterogeneity of human fibrinogen: possible relation to proteolysis by thrombin and plasmin as studies by SDS-polyacrylamide gel electrophoresis. Biochem Biophys Res Commun 1970; 40 (01) 206-211
  • 55 Mosesson MW, Finlayson JS, Galanakis DK. The essential covalent structure of human fibrinogen evinced by analysis of derivatives formed during plasmic hydrolysis. J Biol Chem 1973; 248 (22) 7913-7929
  • 56 Blombaeck B, Blombaeck M, Laurent TC, Persson H. Anomalous behavior of haemophilia A fibrinogen during ultracentrifugation. Biochim Biophys Acta 1965; 97: 171-173
  • 57 Caspary EA, Kekwick RA. Some physicochemical properties of human fibrinogen. Biochem J 1957; 67 (01) 41-48
  • 58 Johnson P, Mihalyi E. Physicochemical studies of bovine fibrinogen. I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine-HC-l solution. Biochim Biophys Acta 1965; 102 (02) 467-475
  • 59 Armstrong Jr SH, Budka MJE, Morrison KC, Hasson M. Preparation and properties of serum and plasma proteins; the refractive properties of the proteins of human plasma and certain purified fractions. J Am Chem Soc 1947; 69 (07) 1747-1753
  • 60 Koenig VL. Partial specific volumes for some porcine and bovine plasma protein fractions. Arch Biochem 1950; 25 (02) 241-245
  • 61 Nanninga LB. Fibrinogen. Preparation, photoelectric determination, molecular weight and viscosity, formol titration-before and after clotting. Arch Neerl Physiol Homme Anim 1946; 28: 241-276
  • 62 Scheraga HA, Laskowski M. The fibrinogen-fibrin conversion. Adv Protein Chem 1957; 12: 1-131
  • 63 Shulman S. The size and shape of bovine fibrinogen. Studies of sedimentation, diffusion and viscosity. J Am Chem Soc 1953; 75: 5846-5852
  • 64 Blombäck BT, Laurent C. N-terminal and light scattering studies on fibrinogen and its transformation to fibrin. Ark Kemi 1958; 12: 137-146
  • 65 Katz S, Gutfreund K, Shulman S, Ferry JD. The conversion of fibrinogen to fibrin. X. Light scattering studies of bovine fibrinogen. J Am Chem Soc 1952; 74: 5706-5709
  • 66 Capet-Antonini FC. [Role of calcium in the structure of fibrinogen]. Biochim Biophys Acta 1970; 200 (03) 497-507
  • 67 Capet-Antonini FCS, Guinand S. [Effect of temperature on the structure of fibrinogen]. Biochim Biophys Acta 1970; 200 (03) 486-496
  • 68 Endres GF, Scheraga HA. Molecular weight of bovine fibrinogen by sedimentation equilibrium. Arch Biochem Biophys 1971; 144 (02) 519-528
  • 69 McDonagh J, Messel H, McDonagh Jr RP, Murano G, Blombäck B. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method. Biochim Biophys Acta 1972; 257 (01) 135-142
  • 70 Bang NU. Normal and abnormal fibrin polymerization. Thromb Diath Haemorrh Suppl 1964; 13: 131-136
  • 71 Hall CE, Slayter HS. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 1959; 5 (01) 11-16
  • 72 Hall CE. Electron microscopy of the fibrinogen molecule and the fibrin clot. Lab Invest 1963; 12: 998-1001
  • 73 Mernan JP, Sheraga HA, Scheraga HA. The configuration of native and partially polymerized fibrinogen. Biochim Biophys Acta 1953; 11 (03) 329-336
  • 74 Stenhagen E. Electrophoresis of human blood plasma: Electrophoretic properties of fibrinogen. Biochem J 1938; 32 (04) 714-718
  • 75 Mihalyi E. Physicochemical studies of bovine fibrinogen. 3. Optical rotation of the native and denatured molecule. Biochim Biophys Acta 1965; 102 (02) 487-499
  • 76 Mihalyi E. The urea denaturation of fibrinogen. I. Kinetic aspects. II. Physical chemical changes. Acta Chem Scand 1950; 4: 317-343
  • 77 Huseby RM, Murray M. Molecular structure of fibrinogen. I. Helical content and the role of the tyrosine moiety in the fibrinogen molecule. Biochim Biophys Acta 1967; 133 (02) 243-250
  • 78 Murray M, Huseby RM. The circular dichroism and optical rotatory dispersion of fibrinogen: states of the aromatic amino acid residues in the molecule. Fed Proc 1967
  • 79 Stryer L, Cohen C, Langridge R. Axial period of fibrinogen and fibrin. Nature 1963; 197: 793-794
  • 80 Bailey K. The proteins of skeletal muscle. Adv Protein Chem 1944; 1: 289-317
  • 81 Brand E, Edsall JT. The chemistry of the proteins and amino acids. Annu Rev Biochem 1947; 16: 223-272
  • 82 Tristam GR. Amino acid composition of purified proteins. Adv Protein Chem 1949; 5: 83-154
  • 83 Henschen A, Blomback B. Amino acid composition of human and bovine fibrinogen and fibrin. Ark Kemi 1964; 22: 347-354
  • 84 Mihalyi E, Small Jr PA, Cooke JP. The amino acid composition of bovine fibrinogen. Arch Biochem Biophys 1964; 106: 229-234
  • 85 Murano G, Wiman B, Blombäck M, Blombäck B. Preparation and isolation of the S-carboxymethyl derivative chains of human fibrinogen. FEBS Lett 1971; 14 (01) 37-41
  • 86 Rao GJS, Chandrasekhar N. Amino-acid composition of prothrombins and fibrinogens. Ann Biochem Exp Med 1961; 21: 233-236
  • 87 Carter JR, Warner ED. Evaluation of disulfide bonds and sulfhydryl groups in the blood clotting mechanism. Am J Physiol 1954; 179 (03) 549-556
  • 88 Henschen A. Number and reactivity of disulfide bonds in fibrinogen and fibrin. Ark Kemi 1964; 22: 355-374
  • 89 Loewy AG, Gallant JA, Dunathan K. Fibrinase. IV. Effect on fibrin solubility. J Biol Chem 1961; 236: 2648-2655
  • 90 Cecil R, Wake RG. The reactions of inter- and intra-chain disulphide bonds in proteins with sulphite. Biochem J 1962; 82 (03) 401-406
  • 91 Blombäck B. Carbohydrates in blood clotting proteins. In: Gottschalk A. ed., Glyco-proteins, Vol. S. Part B. New York: Elsevier Publ. Co.; 1972: 1069-1081
  • 92 Bagdy D, Szara I. The effect of thrombin on the polysaccharide of fibrinogen. Acta Physiol Acad Sci Hung 1955; 7: 179-181
  • 93 Blombäck B. On the properties of fibrinogen and fibrin. Ark Kemi 1958; 1 (02) 99-113
  • 94 Chandrasekhar N, Warren L, Osbahr AJ, Laki K. Role of sialic acid in fibrinogen. Biochim Biophys Acta 1962; 63: 337-339
  • 95 Chandrasekhar N, Laki K. Laki: Fibrin clot formation and the release of carbohydrate. Biochim Biophys Acta 1964; 93: 392-397
  • 96 Laki K. The transition of fibrinogen to fibrin. In: Flynn JE. ed., Blood Clotting and Allied Problems. [Trans 4th Conf Josiah Macy, Jr. Found. Corlies] New York: Macy and Co; 1951: 217-260
  • 97 Laki K, Chandrasekhar N. Sialic acid in fibrinogen and ‘vulcanization’ of the fibrin clot. Nature 1963; 197: 1267-1268
  • 98 Laki K, Gladner JA. Chemistry and physiology of the fibrinogen-fibrin transition. Physiol Rev 1964; 44: 127-160
  • 99 Szara S, Bagdy D. [Polysaccharide of fibrinogen and fibrin]. Acta Physiol Acad Sci Hung 1953; 4 (3-4): 229-233
  • 100 Hörmann H, Gollwitzer R. Hexosengehalt von Fibrinogen und Fibrin. In: Peelers H. ed., Protides Biol Fluids Proc Colloq III. 1963: 332-344
  • 101 Mester L, Szabados L, Gollwitzer R. Sur la prétendue libération d'hexoses au cours de la transformation du fibrinogène en fibrine. C R Acad Hebd Seances Acad Sci D 1966; 262 (12) 1382-1384
  • 102 Raisys V, Molnar J, Winzler RJ. Study of carbohydrate release during the clotting of fibrinogen. Arch Biochem Biophys 1966; 113 (02) 457-460
  • 103 Rosenberg A, Carman RH. Release of carbohydrate from fibrin monomer during clotting. Nature 1964; 204: 994-995
  • 104 Tyler HM. Hexose content of bovine fibrinogen and fibrin, and evidence against its release by fibrin stabilizing factor. Nature 1966; 210 (5040) 1045-1046
  • 105 Laki K, Mester L. The role of the carbohydrate moiety in bovine fibrinogen. Biochim Biophys Acta 1962; 57: 152-154
  • 106 Montgomery R. Glycoproteins. In: Pigman W, Horton D, Herp A. eds. The Carbohydrates, Vol IIB. New York: Academic Press; 1970: 627-709
  • 107 Alexander ABB. Clotting of factor I (fibrinogen) treated with sialidase. Fed Proc 1969; 2: 321
  • 108 Chandrasekhar N, Osbahr AJ, Laki K. Identification of sialic acids in human and bovine fibrinogen. Biochem Biophys Res Commun 1966; 23 (05) 757-760
  • 109 Sherman LA, Mosesson MW, Sherry S. Isolation and characterization of the clottable low molecular weight fibrinogen derived by limited plasmin hydrolysis of human fraction I-4. Biochemistry 1969; 8 (04) 1515-1523
  • 110 Mills DA, Liener IE. Partial chemical characterization of the isolated γ-chain of human fibrinogen. Arch Biochem Biophys 1969; 130 (01) 629-635
  • 111 Mills DA, Triantaphyllopoulos DC. Distribution of carbohydrate among the polypeptide chains and plasmin digest products of human fibrinogen. Arch Biochem Biophys 1969; 135 (01) 28-35
  • 112 Gerbeck CM, Yoshikawa T, Montgomery R. Bovine fibrinogen–heterogeneity of the γ-chains. Arch Biochem Biophys 1969; 134 (01) 67-75
  • 113 Iwanaga S, Blombäck B, Gröndalhl NJ, Hessel B, Wallén P. Amino acid sequence of the N-terminal part of γ-chain in human fibrinogen. Biochim Biophys Acta 1968; 160 (02) 280-283
  • 114 Haschemeyer RH, Cynkin MA, Han LC, Trindle M. Isolation and amino acid sequences of glycopeptides obtained from bovine fibrinogen. Biochemistry 1966; 5 (11) 3443-3448
  • 115 Mester L, Moczar E, Szabados L. Séquence des glucides et des acides aminés dans les glycopeptides isolés du fibrinogenc. Compt Rend Acad Sci 1967; 265: 877-880
  • 116 Bray BA, Laki K. Glycopeptides from fibrinogen and fibrin. Biochemistry 1968; 7 (09) 3119-3126
  • 117 Mester L, Moczar E, Vass G, Szabados L. Identité des Fibrinoglycopeptides isolés à partir du Fibrinogéne et de la Fibrine, par degradation avec la “Pronase.”. Compt Rend Acad Sci 1965; 260: 2342-2343
  • 118 Mester L, Moczar E, Vass G, Szabados L. Structure et role des fractions glucidiques du fibrinogène. Pathol Biol (Paris) 1965; 13 (09) 540-545
  • 119 Mester L. Structure et role des fractions glucidiques des glycoprotéines impliquées dans la coagulation du sang. Bull Soc Chim Biol (Paris) 1969; 51 (04) 635-648
  • 120 Mester L, Schimpl A, Senn M. Identification by mass spectrometry of N-beta aspartyl and N-gamma-glutamyl-2-deoxy-2-acetamido-beta-D-glycosyl amine derivatives. Tetrahedron Lett 1967; 18: 1697-1703
  • 121 Henschen A. On the preparation and properties of sulfitolysed fibrinogen and fibrin. Acta Chem Scand 1962; 16: 1037-1038
  • 122 Henschen A. On the preparation and properties of disulfide-reduced, alkylated fibrinogen and fibrin. Acta Chem Scand 1962; 16: 1526-1527
  • 123 Henschen A. S-sulfo derivatives of fibrinogen and fibrin: Preparation and general properties. Ark Kemi 1963; 22: 1-28
  • 124 Henschen A. Peptide chains in S-sulfo-fibrinogen and S-sulfo-fibrin: Isolation, methods and general properties. Ark Kemi 1964; 22: 375-396
  • 125 Clegg JB, Bailey K. The separation and isolation of the peptide chains of fibrin. Biochim Biophys Acta 1962; 63: 525-527
  • 126 Haschemeyer RH, Nadeau RE. Molecular substructure of fibrinogen. Biochem Biophys Res Commun 1963; 11: 217-223
  • 127 Mosher DF, Blout ER. Heterogeneity of bovine fibrinogen and fibrin. J Biol Chem 1973; 248 (19) 6896-6903
  • 128 Henschen A, Edman P. Large scale preparation of S-carboxymethylated chains of human fibrin and fibrinogen and the occurrence of -chain variants. Biochim Biophys Acta 1972; 263 (02) 351-367
  • 129 McDonagh RP, McDonagh J, Blombäck M, Blombäck B. Crosslinking of human fibrin: evidence for intermolecular crosslinking involving α-chains. FEBS Lett 1971; 14 (01) 33-36
  • 130 Murano G, Wiman B, Blombäck B. Human fibrinogen: some characteristics of its S-carboxymethyl derivative chains. Thromb Res 1972; 1: 161-172
  • 131 Murano G, Williams L. An improved method for the preparative isolation of the S-carboxymethyl derivative chains of human fibrinogen. Prep Biochem 1974; 4 (01) 1-12
  • 132 McKee PA, Mattock P, Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A 1970; 66 (03) 738-744
  • 133 Gaffney PJ, Dobos P. A structural aspect of human fibrinogen suggested by its plasmin degradation. FEBS Lett 1971; 15 (01) 13-16
  • 134 Marder VJ, Shulman NR, Carroll WR. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem 1969; 244 (08) 2111-2119
  • 135 Pizzo SV, Schwartz ML, Hill RL, McKee PA. The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem 1972; 247 (03) 636-645
  • 136 Moseson MW. Fibrinogen catabolic pathways. Semin Thromb Hemost
  • 137 Takagi T, Iwanaga S. Resolution of polypeptide chains of sulfitolyzed fibrinogen by polyacrylamide gel electrophoresis. Biochim Biophys Acta 1969; 194 (02) 594-596
  • 138 Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities. 3. Identification of chain variants. J Biol Chem 1972; 247 (16) 5223-5227
  • 139 Blombäck B, Hessel B, Iwanaga S, Reuterby J, Blombäck M. Primary structure of human fibrinogen and fibrin. J Biol Chem 1972; 247: 1496-1512
  • 140 Blombäck M, Blombäck B, Mammon LF, Prasad AS. Fibrinogen Detroit - a molecular defect in the N-terminal disulfide knot of human fibrinogen. Nature 1968; 218: 134-137
  • 141 Blombäck B, Blombäck M. Molecular defects and variants of fibrinogen. Nouv Rev Fr Hematol 1970; 10 (05) 671-678
  • 142 Lefvert AK, Kudryk B, Murano G, Blombäck B. Immunologic properties of Aalpha chain of human fibrinogen. Eur J Biochem 1974; 47 (01) 23-26
  • 143 Blombäck B, Blombäck M. The molecular structure of fibrinogen. Ann N Y Acad Sci 1972; 202: 77-97
  • 144 Blombäck B, Blombäck M, Henschen A, Hessel B, Iwanaga S, Woods KR. N-terminal disulfide knot of human fibrinogen. Nature 1968; 218: 130-134
  • 145 Blombäck B. The N-terminal disulphide knot of human fibrinogen. Br J Haematol 1969; 17 (02) 145-157
  • 146 Blombäck B, Blombäck M, Finkbeiner W, Holmgren A, Kowalska-Loth B, Olovson G. Enzymatic reduction of disulfide bonds in fibrinogen by the thioredoxin system. I. Identification of reduced bonds and studies on reoxidation process. Thromb Res 1974; 4: 55-75
  • 147 Gardlund B, Kowalska-Loth B, Gröndahl N, Blombäck B. Plasmic degradation products of human fibrinogen. I. Isolation and characterization of fragments E and D and their relation to “disulfide knots.”. Thromb Res 1972; 1: 371-388
  • 148 Kowalska-Loth B, Gårdlund B, Egberg N, Blombäck B. Plasmic degradation products of human fibrinogen. II. Chemical and immunological relation between fragment E and N-DSK. Thromb Res 1973; 2: 423-450
  • 149 Blombäck B, Yamashina I. On the N-terminal amino acids in fibrinogen and fibrin. Ark Kemi 1958; 12: 299-319
  • 150 Irion E, Blombäck B. N-terminal amino acid sequence of intact human fibrinogen. FEBS Lett 1970; 7 (02) 143-146
  • 151 Woods KR, Stephens-Horowitz M, Blombäck B. Effect of thrombin on the molecular weights of N-terminal fragments of human fibrinogen. Thromb Res 1972; 1: 113-126
  • 152 Hessel B, Blombäck M. The proteolytic action of the snake venom enzymes arvin and reptilase on N-terminal chain-fragments of human fibrinogen. FEBS Lett 1971; 18 (02) 318-320
  • 153 McCoy LE, Walz DA, Reuterby J, Seegers WH. Proteolytic specificity of thrombin. Fed Proc 1974
  • 154 Walz DA, Seegers WH, Reuterby J, McCoy LE. Proteolytic specificity of thrombin. Thromb Res 1974; 4 (05) 713-717
  • 155 Huseby RM. Conformational structure of the fibrinopeptides released during fibrinogen to fibrin conversion. Physiol Chem Phys 1973; 5 (01) 1-12
  • 156 Söderqvist T, Blombäck B. Evolutionary constancy of primary structure in an alpha(A)-chain fragment of fibrinogen. FEBS Lett 1970; 7 (04) 321-323
  • 157 Söderqvist T, Blombäck B. Fibrinogen structure and evolution. Naturwissenschaften 1971; 58 (01) 16-23
  • 158 Hessel B, Egberg N, Reuterby J, Abildgaard U. Influence of Reptilase on plasma fibrinogen studied by N-terminal analysis. Abstr. II Congr Int Soc Thromb Haemost 1971; 154
  • 159 Blombäck B. Selectional trends in the structure of fibrinogen of different species. In: Schoffeniels E. ed. Biochemical Evolution and the Origin of Life. Molecular Evolution II. Amsterdam: North Holland Pub. Co.; 1971: 112-129
  • 160 Rudall KM. Comparative biology and biochemistry of collagen. In: Gould BS. ed. Treatise on Collagen, Vol 2. New York: Academic Press; 1968: 83-137
  • 161 Blombäck B. Studies on the action of thrombic enzymes on bovine fibrinogen, as measured by N-terminal analysis. Ark Kemi 1958; 12: 321-335
  • 162 Blombäck B, Veslermark A. Isolation of fibrinopeptides by chromatography. Ark Kemi 1958; 12: 173-182
  • 163 Blombäck B. Studies on fibrinogen: its purification and conversion into fibrin. Acta Physiol Scand Suppl 1958; 43 (Suppl. 148) 1-51
  • 164 Blombäck B, Blombäck M, Gröndahl NJ. Studies on fibrinopeptides from mammals. Acta Chem Scand 1965; 19: 1789-1791
  • 165 Blombäck B, Blombäck M, Gröndahl NJ, Guthrie C, Hinton M. Studies on fibrinopeptides from primates. Acta Chem Scand 1972
  • 166 Blombäck B, Blombäck M, Gröhndahl NJ, Holmberg E. Structure of fibrinopeptides–Its relation to enzyme specificity and phylogeny classification of species. Ark Kemi 1966; 25: 411-428
  • 167 Doolittle RF, Schubert D, Schwartz SA. Amino acid sequence studies on artiodactyl fibrinopeptides. I. Dromedary camel, mule deer, and cape buffalo. Arch Biochem Biophys 1967; 118 (02) 456-467
  • 168 Doolittle RF, Glasgow C, Mross GA. Characterization of fibrinopeptides A and B from a drill (Mandrillus leucophaeus). Biochim Biophys Acta 1969; 175 (01) 217-219
  • 169 Doolittle RF, Mross GA. Identity of chimpanzee with human fibrinopeptides. Nature 1970; 225 (5233) 643-644
  • 170 Folk JE, Gladner JA, Levin Y. Thrombin-induced formation of co-fibrin. III. Acid degradation studies and summary of sequential evidence on peptide A. J Biol Chem 1959; 234: 2317-2320
  • 171 Folk JE, Gladner JA. The amino acid sequence of peptide B of co-fibrin. Biochim Biophys Acta 1960; 44: 383-385
  • 172 Krajewski T, Blombäck B. The location of tyrosine-O-sulphate in fibrinopeptides. Acta Chem Scand 1968; 22 (04) 1339-1346
  • 173 Mross GA, Doolittle RF. Amino acid sequence on artiodactyl fibrinopeptides. II. Vicuna, elk, mountjact pronghorn, antelope and water buffalo. Arch Biochem Biophys 1967; 122: 674-684
  • 174 Mross GA, Doolittle RF, Roberts BF. Gibbon fibrinopeptides: identification of a glycine-serine allelism at position B-3. Science 1970; 170 (3956) 468-470
  • 175 Osbahr Jr AJ, Colman RW, Gladner JA, Laki K. The nature of the peptides released from canine fibrinogen. Biochem Biophys Res Commun 1964; 14: 555-558
  • 176 Haschemeyer AEV, Tinoco Jr I. Charge distribution of fibrinogen as determined by transient electric birefringence studies. Biochemistry 1962; 1: 996-1004
  • 177 Haschemeyer AEV. A polar intermediate in the conversion of fibrinogen to fibrin monomer. Biochemistry 1963; 2: 851-858
  • 178 Donnelly TH, Laskowski Jr M, Notley N, Scheraga HA. Equilibria in the fibrinogen-fibrin conversion. II. Reversibility of the polymerization steps. Arch Biochem Biophys 1955; 56 (02) 369-387
  • 179 Ehrlich P, Shulman S, Ferry JD. The conversion of fibrinogen to fibrin. VIII. Sedimentation and viscosity studies on clotting systems inhibited by urea and on solutions of fibrin in urea. J Am Chem Soc 1952; 74: 2258-2265
  • 180 Ferry JD, Shulman S. The conversion of fibrinogen to fibrin. I. Influence of hydroxyl compounds on clotting time and clot capacity. J Am Chem Soc 1949; 71: 3198-3204
  • 181 Ferry JD, Shulman S, Gutfreund K, Katz S. The conversion of fibrinogen to fibrin. XI. Light scattering studies on clotting systems inhibited by hexamethylene glycol. J Am Chem Soc 1952; 74: 5709-5715
  • 182 Laurent TC, Blombäck B. On the significance of the release of two different peptides from fibrinogen during clotting. Acta Chem Scand 1958; 12: 1875-1877
  • 183 Kudryk B, Reuterby J, Blombäck B. Adsorption of plasmic fragment D to thrombin modified fibrinogen-sepharose. Thromb Res 1973; 2: 297-303
  • 184 Kudryk B, Collen D, Woods KR, Blombäck B. Evidence for localization of polymerization sites in fibrinogen. J Biol Chem, In press
  • 185 Endres GF, Ehrenpreis S, Scheraga HA. Equilibria in the fibrinogen-fibrin conversion. VI. Ionization changes in the reversible polymerization of fibrin monomer. Biochemistry 1966; 5 (05) 1561-1567
  • 186 Thomas HW. Fibrous proteins: The polymerization and gelation of fibrin.
  • 187 Doolittle RF, Cassman KG, Chen R, Sharp JJ, Wooding GL. Correlation of the mode of fibrin polymerization with the pattern of cross-linking. Ann N Y Acad Sci 1972; 202: 114-126
  • 188 Lorand L. Fibrinoligase: the fibrin-stabilizing factor system of blood plasma. Ann N Y Acad Sci 1972; 202: 6-30
  • 189 McDonagh Jr RP, McDonagh J, Duckert F. The influence of fibrin crosslinking on the kinetics of urokinase-induced clot lysis. Br J Haematol 1971; 21 (03) 323-332
  • 190 McDonagh Jr RP, McDonagh J, Blombäck B. Polypeptide chains of human fibrin: molecular organization in cross-linking. Ann N Y Acad Sci 1972; 202: 335-340
  • 191 Finlayson JS. Crosslinking of fibrin. Semin Thromb Hemost, This issue
  • 192 Mihalyi E, Godfrey JE. Digestion of fibrinogen by trypsin. II. Characterization of the large fragment obtained. Biochim Biophys Acta 1963; 67: 90-103
  • 193 Mester L, Szabados L. Différences constitutionnelles et fonctionnelles entre les fragments glucidiques du fibrinogène humain normal et d'un fibrinogène humain anormal. Bull Soc Chim Biol (Paris) 1968; 50 (12) 2561-2566
  • 194 Mester L. 1. Szabados: Differences Constitutionelles dans les Fragments Glueidiques d'un Fibrinogène Humain Anormal. Compt Rend Acad Sci 1968; 266: 34-36
  • 195 Consden R, Stanier WM. Ionophoresis of sugars on paper and some applications to the analysis of protein polysaccharide complexes. Nature 1952; 169 (4306) 783-785
  • 196 Abildgaard U. N-terminal analysis during coagulation of purified human fibrinogen, fraction I, and plasma. Scand J Clin Lab Invest 1965; 17 (06) 529-536
  • 197 Loran L, Middlebrook WR. Species specificity of fibrinogen as revealed by end-group studies. Science 1953; 118 (3070) 515-516
  • 198 Vonkorff RW, Pollara B, Coyne R, Runquist J, Kapoor R. Application of radioisotopic yield to the quantitation of the N-terminal amino acids of fibrinogen. Biochim Biophys Acta 1963; 74: 698-708
  • 199 Bailey K, Bettelheim FR. The clotting of fibrinogen. I. The liberation of peptide material. Biochim Biophys Acta 1955; 18 (04) 495-503
  • 200 Lorand L, Middlebrook WR. The action of thrombin on fibrinogen. Biochem J 1952; 52 (02) 196-199