Semin Thromb Hemost
DOI: 10.1055/s-0043-1775858
Review Article

Whole Blood Viscosity and Cerebral Blood Flow in Acute Ischemic Stroke

Prajwal Gyawali
1   Heart and Stroke Program, Hunter Medical Research Institute and School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
,
Thomas P. Lillicrap
2   Heart and Stroke Program, Department of Neurology, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
,
Carlos G. Esperon
2   Heart and Stroke Program, Department of Neurology, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
,
Aseem Bhattarai
3   Department of Biochemistry, Institute of Medicine, Kathmandu, Nepal
,
Andrew Bivard
4   Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
,
Neil Spratt
5   Heart and Stroke Program, Department of Neurology, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
› Author Affiliations
Funding N.S. was supported by the New South Wales Health Cardiovascular Research Capacity Program, Senior Researcher Grant (H20/28248).

Abstract

Existing effective treatments for ischemic stroke restore blood supply to the ischemic region using thrombolysis or mechanical removal of clot. However, it is increasingly recognized that successful removal of occlusive thrombus from the large artery—recanalization, may not always be accompanied by successful restoration of blood flow to the downstream tissues—reperfusion. Ultimately, brain tissue survival depends on cerebral perfusion, and a functioning microcirculation. Because capillary diameter is often equal to or smaller than an erythrocyte, microcirculation is largely dependent on erythrocyte rheological (hemorheological) factors such as whole blood viscosity (WBV). Several studies in the past have demonstrated elevated WBV in stroke compared with healthy controls. Also, elevated WBV has shown to be an independent risk factor for stroke. Elevated WBV leads to endothelial dysfunction, decreases nitric oxide-dependent flow-mediated vasodilation, and promotes hemostatic alterations/thrombosis, all leading to microcirculation sludging. Compromised microcirculation further leads to decreased cerebral perfusion. Hence, modulating WBV through pharmacological agents might be beneficial to improve cerebral perfusion in stroke. This review discusses the effect of elevated WBV on endothelial function, hemostatic alterations, and thrombosis leading to reduced cerebral perfusion in stroke.



Publication History

Article published online:
09 October 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 De Silva DA, Fink JN, Christensen S. et al; Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) Investigators. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET). Stroke 2009; 40 (08) 2872-2874
  • 2 Soares BP, Tong E, Hom J. et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke 2010; 41 (01) e34-e40
  • 3 Baron JC. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11 (Suppl. 01) 2-8
  • 4 Nogueira RG, Jadhav AP, Haussen DC. et al; DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018; 378 (01) 11-21
  • 5 Ma H, Campbell BCV, Parsons MW. et al; EXTEND Investigators. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 2019; 380 (19) 1795-1803
  • 6 Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke 2008; 39 (03) 924-928
  • 7 Dong Q, Dong Y, Liu L. et al. The Chinese Stroke Association scientific statement: intravenous thrombolysis in acute ischaemic stroke. Stroke Vasc Neurol 2017; 2 (03) 147-159
  • 8 Chia NH, Leyden JM, Newbury J, Jannes J, Kleinig TJ. Determining the number of ischemic strokes potentially eligible for endovascular thrombectomy: a population-based study. Stroke 2016; 47 (05) 1377-1380
  • 9 McMeekin P, White P, James MA, Price CI, Flynn D, Ford GA. Estimating the number of UK stroke patients eligible for endovascular thrombectomy. Eur Stroke J 2017; 2 (04) 319-326
  • 10 Sah RG, d'Esterre CD, Hill MD. et al. Diffusion-weighted imaging lesion growth occurs despite recanalization in acute ischemic stroke: implications for future treatment trials. Int J Stroke 2019; 14 (03) 257-264
  • 11 Tomsick T, Broderick J, Carrozella J. et al; Interventional Management of Stroke II Investigators. Revascularization results in the Interventional Management of Stroke II trial. AJNR Am J Neuroradiol 2008; 29 (03) 582-587
  • 12 Soares BP, Chien JD, Wintermark M. MR and CT monitoring of recanalization, reperfusion, and penumbra salvage: everything that recanalizes does not necessarily reperfuse!. Stroke 2009; 40 (03) S24-S27
  • 13 Khatri P, Neff J, Broderick JP, Khoury JC, Carrozzella J, Tomsick T. IMS-I Investigators. Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS-I. Stroke 2005; 36 (11) 2400-2403
  • 14 Bhatia R, Hill MD, Shobha N. et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 2010; 41 (10) 2254-2258
  • 15 Goyal M, Menon BK, van Zwam WH. et al; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387 (10029): 1723-1731
  • 16 Berkhemer OA, Fransen PS, Beumer D. et al; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372 (01) 11-20
  • 17 Goyal M, Demchuk AM, Menon BK. et al; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372 (11) 1019-1030
  • 18 Fransen PSS, Beumer D, Berkhemer OA. et al; MR CLEAN Investigators. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial. Trials 2014; 15 (01) 343
  • 19 Saver JL, Goyal M, Bonafe A. et al; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372 (24) 2285-2295
  • 20 Campbell BC, Mitchell PJ, Yan B. et al; EXTEND-IA investigators. A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 2014; 9 (01) 126-132
  • 21 Molina CA, Chamorro A, Rovira À. et al. REVASCAT: a randomized trial of revascularization with SOLITAIRE FR device vs. best medical therapy in the treatment of acute stroke due to anterior circulation large vessel occlusion presenting within eight-hours of symptom onset. Int J Stroke 2015; 10 (04) 619-626
  • 22 Wollenweber FA, Tiedt S, Alegiani A. et al. Functional outcome following stroke thrombectomy in clinical practice. Stroke 2019; 50 (09) 2500-2506
  • 23 Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care 2005; 9 (Suppl 4) S20-S26
  • 24 Vollmar B, Glasz J, Leiderer R, Post S, Menger MD. Hepatic microcirculatory perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion. Am J Pathol 1994; 145 (06) 1421-1431
  • 25 Levy BI, Schiffrin EL, Mourad JJ. et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 2008; 118 (09) 968-976
  • 26 Østergaard L, Granfeldt A, Secher N. et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand 2015; 59 (10) 1246-1259
  • 27 Little JR, Kerr FW, Sundt Jr TM. Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke 1976; 7 (01) 25-30
  • 28 Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 1994; 145 (03) 728-740
  • 29 del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991; 22 (10) 1276-1283
  • 30 Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 2000; 31 (05) 1153-1161
  • 31 Tikhomirova IA, Oslyakova AO, Mikhailova SG. Microcirculation and blood rheology in patients with cerebrovascular disorders. Clin Hemorheol Microcirc 2011; 49 (1–4): 295-305
  • 32 Körber N, Schneider R, Brockmann M. Circulatory parameters of the retina in patients with lacunar stroke. J Neurol 1986; 233 (01) 30-33
  • 33 Pérez-Bárcena J, Goedhart P, Ibáñez J. et al. Direct observation of human microcirculation during decompressive craniectomy after stroke. Crit Care Med 2011; 39 (05) 1126-1129
  • 34 Arsava EM, Arat A, Topcuoglu MA, Peker A, Yemisci M, Dalkara T. Angiographic microcirculatory obstructions distal to occlusion signify poor outcome after endovascular treatment for acute ischemic stroke. Transl Stroke Res 2018; 9 (01) 44-50
  • 35 Ong Y-T, De Silva DA, Cheung CY. et al. Microvascular structure and network in the retina of patients with ischemic stroke. Stroke 2013; 44 (08) 2121-2127
  • 36 Popel AS, Johnson PC. Microcirculation and hemorheology. Annu Rev Fluid Mech 2005; 37: 43-69
  • 37 Gyawali P, Lillicrap TP, Tomari S. et al. Whole blood viscosity is associated with baseline cerebral perfusion in acute ischemic stroke. Neurol Sci 2022; 43 (04) 2375-2381
  • 38 Song SH, Kim JH, Lee JH, Yun YM, Choi DH, Kim HY. Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke. BMC Neurol 2017; 17 (01) 20
  • 39 Li RY, Cao ZG, Li Y, Wang RT. Increased whole blood viscosity is associated with silent cerebral infarction. Clin Hemorheol Microcirc 2015; 59 (04) 301-307
  • 40 Lowe GDO, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol 1997; 96 (01) 168-173
  • 41 Velcheva I, Antonova N, Titianova E, Damianov P, Dimitrov N, Dimitrova V. Hemorheological disturbances in cerebrovascular diseases. Clin Hemorheol Microcirc 2008; 39 (1–4): 391-396
  • 42 Ernst E, Resch KL, Matrai A, Buhl M, Schlosser P, Paulsen HF. Impaired blood rheology: a risk factor after stroke?. J Intern Med 1991; 229 (05) 457-462
  • 43 Devereux RB, Case DB, Alderman MH, Pickering TG, Chien S, Laragh JH. Possible role of increased blood viscosity in the hemodynamics of systemic hypertension. Am J Cardiol 2000; 85 (10) 1265-1268
  • 44 Cicco G, Pirrelli A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc 1999; 21 (3–4): 169-177
  • 45 Sandhagen B, Frithz G, Waern U, Ronquist G. Increased whole blood viscosity combined with decreased erythrocyte fluidity in untreated patients with essential hypertension. J Intern Med 1990; 228 (06) 623-626
  • 46 Solá E, Vayá A, Simó M. et al. Fibrinogen, plasma viscosity and blood viscosity in obesity. Relationship with insulin resistance. Clin Hemorheol Microcirc 2007; 37 (04) 309-318
  • 47 Brun JF, Aloulou I, Varlet-Marie E. Hemorheological aspects of the metabolic syndrome: markers of insulin resistance, obesity or hyperinsulinemia?. Clin Hemorheol Microcirc 2004; 30 (3–4): 203-209
  • 48 Fanari P, Somazzi R, Nasrawi F. et al. Haemorheological changes in obese adolescents after short-term diet. Int J Obes Relat Metab Disord 1993; 17 (09) 487-494
  • 49 Guiraudou M, Varlet-Marie E, Raynaud de Mauverger E, Brun JF. Obesity-related increase in whole blood viscosity includes different profiles according to fat localization. Clin Hemorheol Microcirc 2013; 55 (01) 63-73
  • 50 Høieggen A, Fossum E, Moan A, Enger E, Kjeldsen SE. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens 1998; 16 (02) 203-210
  • 51 Tamariz LJ, Young JH, Pankow JS. et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 2008; 168 (10) 1153-1160
  • 52 Caimi G, Messina L, Alfano R. et al. Haemorheological profile in subjects with nonvalvular atrial fibrillation. Clin Hemorheol Microcirc 1999; 20 (02) 85-90
  • 53 Cecchi E, Marcucci R, Poli D. et al. Hyperviscosity as a possible risk factor for cerebral ischemic complications in atrial fibrillation patients. Am J Cardiol 2006; 97 (12) 1745-1748
  • 54 Gyawali P, Richards RS, Bwititi P, Nwose EU. The association of dyslipidemia with erythrocyte aggregation. Clin Lipidol 2015; 10 (02) 129-135
  • 55 Shimada S, Hasegawa K, Wada H. et al. High blood viscosity is closely associated with cigarette smoking and markedly reduced by smoking cessation. Circ J 2011; 75 (01) 185-189
  • 56 Gyawali P, Richards RS, Bwititi PT, Nwose EU. Association of abnormal erythrocyte morphology with oxidative stress and inflammation in metabolic syndrome. Blood Cells Mol Dis 2015; 54 (04) 360-363
  • 57 Gyawali P, Richards RS. Association of altered hemorheology with oxidative stress and inflammation in metabolic syndrome. Redox Rep 2015; 20 (03) 139-144
  • 58 Gyawali P, Ziegler D, Cailhier JF, Denault A, Cloutier G. Quantitative measurement of erythrocyte aggregation as a systemic inflammatory marker by ultrasound imaging: a systematic review. Ultrasound Med Biol 2018; 44 (07) 1303-1317
  • 59 Szapary L, Horvath B, Marton Z. et al. Hemorheological disturbances in patients with chronic cerebrovascular diseases. Clin Hemorheol Microcirc 2004; 31 (01) 1-9
  • 60 Kowal P, Marcinkowska-Gapińska A. Hemorheological changes dependent on the time from the onset of ischemic stroke. J Neurol Sci 2007; 258 (1–2): 132-136
  • 61 Tsuda Y, Satoh K, Kitadai M, Takahashi T. Hemorheologic profiles of plasma fibrinogen and blood viscosity from silent to acute and chronic cerebral infarctions. J Neurol Sci 1997; 147 (01) 49-54
  • 62 Fisher M, Meiselman HJ. Hemorheological factors in cerebral ischemia. Stroke 1991; 22 (09) 1164-1169
  • 63 Wong WJ, Hu HH, Luk YO, Lo YK. The follow-up study of blood viscosity in the patients with acute ischemic stroke. Clin Hemorheol Microcirc 1994; 14 (05) 723-730
  • 64 Furukawa K, Abumiya T, Sakai K. et al. Increased blood viscosity in ischemic stroke patients with small artery occlusion measured by an electromagnetic spinning sphere viscometer. J Stroke Cerebrovasc Dis 2016; 25 (11) 2762-2769
  • 65 Totsimon K, Nagy A, Sandor B. et al. Hemorheological alterations in carotid artery stenosis. Clin Hemorheol Microcirc 2016; 64 (01) 55-63
  • 66 Banerjee R, Nageswari K, Puniyani RR. Association of hemorheological parameters and risk of stroke in hypertensives of Indian origin. Clin Exp Hypertens 2000; 22 (7–8): 687-694
  • 67 Smith FB, Rumley A, Lee AJ, Leng GC, Fowkes FG, Lowe GD. Haemostatic factors and prediction of ischaemic heart disease and stroke in claudicants. Br J Haematol 1998; 100 (04) 758-763
  • 68 Grotta J, Ackerman R, Correia J, Fallick G, Chang J. Whole blood viscosity parameters and cerebral blood flow. Stroke 1982; 13 (03) 296-301
  • 69 Santos-Galduróz RF, Bueno OF, Yamaga LI, Armani F, Galduróz JC. Influence of blood viscosity to cerebral blood flow in older humans compared to young subjects. Clin Neurophysiol 2012; 123 (01) 117-120
  • 70 Stuart J, Kenny MW. Blood rheology. J Clin Pathol 1980; 33 (05) 417-429
  • 71 Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003; 29 (05) 435-450
  • 72 Baskurt OK, Meiselman HJ. Hemodynamic effects of red blood cell aggregation. Indian J Exp Biol 2007; 45 (01) 25-31
  • 73 Baskurt OK, Hardeman MR, Rampling MW. Handbook of hemorheology and hemodynamics. Vol. 69. Amsterdam, Netherlands: IOS Press; 2007
  • 74 Marossy A, Svorc P, Kron I, Gresová S. Hemorheology and circulation. Clin Hemorheol Microcirc 2009; 42 (04) 239-258
  • 75 Fieschi C, Agnoli A, Battistini N, Bozzao L, Prencipe M. Derangement of regional cerebral blood flow and of its regulatory mechanisms in acute cerebrovascular lesions. Neurology 1968; 18 (12) 1166-1179
  • 76 Başkurt O, Levi E, Çağlayan S. et al. The role of hemorheologic factors in the coronary circulation. Clin Hemorheol Microcirc 1991; 11 (1–2): 121-127
  • 77 Tranmer BI, Keller TS, Kindt GW, Archer D. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg 1992; 77 (02) 253-259
  • 78 Hasegawa T, Ravens JR, Toole JF. Precapillary arteriovenous anastomoses. “Thoroughfare channels” in the brain. Arch Neurol 1967; 16 (02) 217-224
  • 79 Cetin MS, Ozcan Cetin EH, Canpolat U. et al. An overlooked parameter in coronary slow flow phenomenon: whole blood viscosity. Biomarkers Med 2015; 9 (12) 1311-1321
  • 80 Cecchi E, Liotta AA, Gori AM. et al. Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 2009; 134 (02) 189-194
  • 81 Cetin MS, Ozcan Cetin EH, Balcı KG. et al. The association between whole blood viscosity and coronary collateral circulation in patients with chronic total occlusion. Korean Circ J 2016; 46 (06) 784-790
  • 82 Forconi S, Gori T. Endothelium and hemorheology. Clin Hemorheol Microcirc 2013; 53 (1–2): 3-10
  • 83 Yagi H, Sumino H, Aoki T. et al. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors. Clin Hemorheol Microcirc 2016; 62 (02) 139-150
  • 84 Cowan AQ, Cho DJ, Rosenson RS. Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovasc Drugs Ther 2012; 26 (04) 339-348
  • 85 Kensey KR. The mechanistic relationships between hemorheological characteristics and cardiovascular disease. Curr Med Res Opin 2003; 19 (07) 587-596
  • 86 Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282 (21) 2035-2042
  • 87 Kloner RA. No-reflow phenomenon: maintaining vascular integrity. J Cardiovasc Pharmacol Ther 2011; 16 (3–4): 244-250
  • 88 Langille BL, O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986; 231 (4736) 405-407
  • 89 Melkumyants AM, Balashov SA, Khayutin VM. Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc Res 1989; 23 (09) 741-747
  • 90 Tsai AG, Acero C, Nance PR. et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 2005; 288 (04) H1730-H1739
  • 91 Giannattasio C, Piperno A, Failla M, Vergani A, Mancia G. Effects of hematocrit changes on flow-mediated and metabolic vasodilation in humans. Hypertension 2002; 40 (01) 74-77
  • 92 Belhassen L, Pelle G, Sediame S. et al. Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood 2001; 97 (06) 1584-1589
  • 93 Bishop JJ, Popel AS, Intaglietta M, Johnson PC. Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration. Am J Physiol Heart Circ Physiol 2001; 281 (02) H939-H950
  • 94 Fahraeus R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med Scand 1958; 161 (02) 151-165
  • 95 Baskurt OK, Yalcin O, Ozdem S, Armstrong JK, Meiselman HJ. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am J Physiol Heart Circ Physiol 2004; 286 (01) H222-H229
  • 96 Késmárky G, Fehér G, Koltai K, Horváth B, Tóth K. Viscosity, hemostasis and inflammation in atherosclerotic heart diseases. Clin Hemorheol Microcirc 2006; 35 (1–2): 67-73
  • 97 de Boer D, Ring C, Wood M. et al. Time course and mechanisms of mental stress-induced changes and their recovery: hematocrit, colloid osmotic pressure, whole blood viscosity, coagulation times, and hemodynamic activity. Psychophysiology 2007; 44 (04) 639-649
  • 98 Kwaan HC. Role of plasma proteins in whole blood viscosity: a brief clinical review. Clin Hemorheol Microcirc 2010; 44 (03) 167-176
  • 99 Sun J, Han K, Xu M. et al. Blood viscosity in subjects with type 2 diabetes mellitus: roles of hyperglycemia and elevated plasma fibrinogen. Front Physiol 2022; 13: 827428
  • 100 Zhang JN, Wood J, Bergeron AL. et al. Effects of low temperature on shear-induced platelet aggregation and activation. J Trauma 2004; 57 (02) 216-223
  • 101 Bell W. Defibrinogenation with arvin. Thromb Diath Haemorrh 1973; 371-375
  • 102 Brust M, Aouane O, Thiébaud M. et al. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Sci Rep 2014; 4 (01) 4348
  • 103 Chien S, Usami S, Dellenback RJ, Gregersen MI, Nanninga LB, Guest MM. Blood viscosity: influence of erythrocyte aggregation. Science 1967; 157 (3790) 829-831
  • 104 Marton Z, Kesmarky G, Vekasi J. et al. Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods. Clin Hemorheol Microcirc 2001; 24 (02) 75-83
  • 105 Rampling MW. Red cell aggregation and yield stress. In: Clinical Blood Rheology. Boca Raton: CRC Press;; 2019: 45-64
  • 106 Wilhelmsen L, Svärdsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311 (08) 501-505
  • 107 Jood K, Danielson J, Ladenvall C, Blomstrand C, Jern C. Fibrinogen gene variation and ischemic stroke. J Thromb Haemost 2008; 6 (06) 897-904
  • 108 Rothwell PM, Howard SC, Power DA. et al. Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke 2004; 35 (10) 2300-2305
  • 109 Chuang S-Y, Bai CH, Chen WH, Lien LM, Pan WH. Fibrinogen independently predicts the development of ischemic stroke in a Taiwanese population: CVDFACTS study. Stroke 2009; 40 (05) 1578-1584
  • 110 Danesh J, Lewington S, Thompson SG. et al; Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294 (14) 1799-1809
  • 111 Turaj W, Słowik A, Dziedzic T. et al. Increased plasma fibrinogen predicts one-year mortality in patients with acute ischemic stroke. J Neurol Sci 2006; 246 (1–2): 13-19
  • 112 Di Napoli M, Papa F, Bocola V. Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke 2001; 32 (01) 133-138
  • 113 Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324 (7329) 71-86
  • 114 Du VX, Huskens D, Maas C. et al. New insights into the role of erythrocytes in thrombus formation. Semin Thromb Hemost 2014; 40 (01) 72-80
  • 115 Vallés J, Santos MT, Aznar J. et al. Platelet-erythrocyte interactions enhance α(IIb)β(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 2002; 99 (11) 3978-3984
  • 116 Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood 2002; 100 (10) 3797-3803
  • 117 Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost 2019; 17 (02) 271-282
  • 118 Flamm MH, Diamond SL. Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng 2012; 40 (11) 2355-2364
  • 119 Tanahashi N, Tomita M, Kobari M. et al. Platelet activation and erythrocyte aggregation rate in patients with cerebral infarction. Clin Hemorheol Microcirc 1996; 16 (04) 497-505
  • 120 Aarts PA, Heethaar RM, Sixma JJ. Red blood cell deformability influences platelets–vessel wall interaction in flowing blood. Blood 1984; 64 (06) 1228-1233
  • 121 Reimers RC, Sutera SP, Joist JH. Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms. Blood 1984; 64 (06) 1200-1206
  • 122 Klatt C, Krüger I, Zey S. et al. Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis. J Clin Invest 2018; 128 (09) 3906-3925
  • 123 Barshtein G, Ben-Ami R, Yedgar S. Role of red blood cell flow behavior in hemodynamics and hemostasis. Expert Rev Cardiovasc Ther 2007; 5 (04) 743-752
  • 124 Hathcock JJ. Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2006; 26 (08) 1729-1737
  • 125 Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G. A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 2011; 9 (03) 481-488
  • 126 Lee AJ, Mowbray PI, Lowe GD, Rumley A, Fowkes FG, Allan PL. Blood viscosity and elevated carotid intima-media thickness in men and women: the Edinburgh Artery Study. Circulation 1998; 97 (15) 1467-1473
  • 127 Williamson TH, Rumley A, Lowe GD. Blood viscosity, coagulation, and activated protein C resistance in central retinal vein occlusion: a population controlled study. Br J Ophthalmol 1996; 80 (03) 203-208
  • 128 Çınar T, Hayıroğlu Mİ, Selçuk M. et al. Association of whole blood viscosity with thrombus presence in patients undergoing transoesophageal echocardiography. Int J Cardiovasc Imaging 2022; 38 (03) 601-607
  • 129 Ekizler FA, Cay S, Tak BT. et al. Usefulness of the whole blood viscosity to predict stent thrombosis in ST-elevation myocardial infarction. Biomarkers Med 2019; 13 (15) 1307-1320
  • 130 Çınar T, Şaylık F, Akbulut T. et al. The association between whole blood viscosity and high thrombus burden in patients with non-ST elevation myocardial infarction. Kardiol Pol 2022; 80 (04) 429-435 (Polish Heart Journal)
  • 131 Çırakoğlu ÖF, Aslan AO, Yilmaz AS, Kul S, Dursun İ. Usefulness of whole blood viscosity estimated by de Simeone's formula to predict left ventricular thrombus formation within one year following acute anterior myocardial infarction. Biorheology 2020; 57 (01) 37-51
  • 132 Dai X, Wang X, Huang Z, Wang K, Ding W. Exact association between preoperative blood viscosity and postoperative deep venous thrombosis risk in knee osteoarthritis patients: a 10-year retrospective study. Clin Appl Thromb Hemost 2021;27:10760296211048896
  • 133 Cetin EHO, Cetin MS, Canpolat U. et al. Prognostic significance of whole blood viscosity estimated by de Simone's formula in ST-elevation myocardial infarction. Biomarkers Med 2016; 10 (05) 495-511
  • 134 Izumi Y, Tsuda Y, Ichihara S, Takahashi T, Matsuo H. Effects of defibrination on hemorheology, cerebral blood flow velocity, and CO2 reactivity during hypocapnia in normal subjects. Stroke 1996; 27 (08) 1328-1332
  • 135 Pais E, Alexy T, Holsworth Jr RE, Meiselman HJ. Effects of nattokinase, a pro-fibrinolytic enzyme, on red blood cell aggregation and whole blood viscosity. Clin Hemorheol Microcirc 2006; 35 (1–2): 139-142
  • 136 Alkuraishy HM, Al-Gareeb AI, Albuhadilly AK. Vinpocetine and pyritinol: a new model for blood rheological modulation in cerebrovascular disorders—a randomized controlled clinical study. BioMed Res Int 2014; 2014: 324307
  • 137 Brown MM, Marshall J. Effect of plasma exchange on blood viscosity and cerebral blood flow. Br Med J (Clin Res Ed) 1982; 284 (6331) 1733-1736
  • 138 Italian Acute Stroke Study Group. Haemodilution in acute stroke: results of the Italian haemodilution trial. Lancet 1988; 1 (8581) 318-321
  • 139 Aichner FT, Fazekas F, Brainin M, Pölz W, Mamoli B, Zeiler K. Hypervolemic hemodilution in acute ischemic stroke: the Multicenter Austrian Hemodilution Stroke Trial (MAHST). Stroke 1998; 29 (04) 743-749
  • 140 Asplund K. Randomized clinical trials of hemodilution in acute ischemic stroke. Acta Neurol Scand Suppl 1989; 127 (s127): 22-30
  • 141 Strand T, Asplund K, Eriksson S, Hägg E, Lithner F, Wester PO. A randomized controlled trial of hemodilution therapy in acute ischemic stroke. Stroke 1984; 15 (06) 980-989
  • 142 Szakáll S, Boros I, Balkay L. et al. Cerebral effects of a single dose of intravenous vinpocetine in chronic stroke patients: a PET study. J Neuroimaging 1998; 8 (04) 197-204
  • 143 Bönöczk P, Panczel G, Nagy Z. Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: a near infrared spectroscopy and transcranial Doppler study. Eur J Ultrasound 2002; 15 (1–2): 85-91
  • 144 Feigin VL, Doronin BM, Popova TF, Gribatcheva EV, Tchervov DV. Vinpocetine treatment in acute ischaemic stroke: a pilot single-blind randomized clinical trial. Eur J Neurol 2001; 8 (01) 81-85
  • 145 Gelmers HJ, Gorter K, de Weerdt CJ, Wiezer HJ. A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med 1988; 318 (04) 203-207
  • 146 Paci A, Ottaviano P, Trenta A. et al. Nimodipine in acute ischemic stroke: a double-blind controlled study. Acta Neurol Scand 1989; 80 (04) 282-286
  • 147 Ameriso SF, Wenby RB, Meiselman HJ, Fisher M. Nimodipine and the evolution of hemorheological variables after acute ischemic stroke. J Stroke Cerebrovasc Dis 1992; 2 (01) 22-25
  • 148 Ichihara S, Tsuda Y, Hosomi N, Kitadai M, Matsuo H. Nimodipine improves brain energy metabolism and blood rheology during ischemia and reperfusion in the gerbil brain. J Neurol Sci 1996; 144 (1–2): 84-90
  • 149 Niemann J. Very early nimodipine use in stroke (venus): a randomized, double-blind, placebo-controlled trial. Ann Emerg Med 2002; 39 (01) 102-103
  • 150 Group TS. Trust Study Group. Randomised, double-blind, placebo-controlled trial of nimodipine in acute stroke. Lancet 1990; 336 (8725) 1205-1209
  • 151 Hartmann A. Effect of pentoxifylline on regional cerebral blood flow in patients with cerebral vascular disorders. Eur Neurol 1983; 22 (1, Suppl 1) 108-115
  • 152 Hartmann A. Comparative randomized study of cerebral blood flow after long-term administration of pentoxifylline and co-dergocrine mesylate in patients with chronic cerebrovascular disease. Curr Med Res Opin 1985; 9 (07) 475-479
  • 153 Koppenhagen K, Wenig HG, Müller K. The effect of pentoxifylline (‘Trental’) on cerebral blood flow: a double-blind study. Curr Med Res Opin 1976; –1977 4 (10) 681-687
  • 154 Passero S, Nardini M, Battistini N. Effect of pentoxifylline on cerebral blood flow in patients with chronic cerebrovascular disease. J Int Med Res 1981; 9 (03) 211-214
  • 155 Turcáni P, Turèáni M. Effect of propentofylline on cerebral blood flow in a gerbil focal cerebral ischemia. J Neurol Sci 2001; 183 (01) 57-60
  • 156 Chan YW, Kay CS. Pentoxifylline in the treatment of acute ischaemic stroke–a reappraisal in Chinese stroke patients. Clin Exp Neurol 1993; 30: 110-116