Subscribe to RSS

DOI: 10.1055/s-0043-1775436
Synthetic Applications of Amino Acid Derived Aldehydes in Asymmetric Hydroxylation Reactions Using Nitrosobenzene
We gratefully acknowledge the University Grants Commission, New Delhi, India, for financial support in the form of a Junior Research Fellowship (JRF) Sudeep Dhillon (Ref. No. 114/(CSIR UGC NET JUNE)).

Abstract
This review highlights the proline-catalyzed asymmetric α-hydroxylation of aldehydes derived from amino acids. This reaction provides a robust method for introducing a hydroxyl group at the α-position of the aldehyde with high stereocontrol. The stereochemical outcome of the hydroxylation is primarily governed by the chiral environment of the proline catalyst and is further influenced by the pre-existing chiral center within the substrate. Post-hydroxylation, the aldehyde intermediates can be readily transformed into alcohols or olefins, depending on the synthetic requirements. We explore the utility of amino acid derived aldehydes, such as those obtained from l-glutamic acid, phenylalanine, proline, and l-aspartic acid, in the context of asymmetric synthesis. The scope of this methodology extends to the efficient construction of various natural products and bioactive compounds, highlighting its significance in modern organic synthesis.
1 Introduction
2 Mechanistic Overview of the Proline-Catalyzed Asymmetric α-Hydroxylation of Aldehydes
3 Review of the Proline-Catalyzed Asymmetric α-Hydroxylation of Aldehydes
4 Current Overview and Future Prospective
5 Conclusion
Publication History
Received: 09 September 2024
Accepted after revision: 09 December 2024
Article published online:
27 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
- 2 Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
- 3 Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
- 4 Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2004; 43: 1112
- 5 Zhong G, Yu Y. Org. Lett. 2004; 6: 1637
- 6 Merino P, Tejero T. Angew. Chem. Int. Ed. 2004; 43: 2995
- 7 Ramachary DB, Barbas CF. III. Org. Lett. 2005; 7: 1577
- 8 Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
- 9 Bogevig A, Sunden H, Cordova A. Angew. Chem. Int. Ed. 2004; 43: 1109
- 10 Font D, Bastero A, Sayalero S, Jimeno C, Pericàs MA. Org. Lett. 2007; 9: 1943
- 11 Kondekar NB, Kumar P. Org. Lett. 2009; 11: 2611
- 12 Chacko S, Ramapanicker R. J. Org. Chem. 2015; 80: 4776
- 13 Philip AT, Raju E, Ramapanicker R. Eur. J. Org. Chem. 2016; 5502
- 14 Jain VK, Ramapanicker R. Tetrahedron 2017; 73: 1568
- 15 Jain VK. SynOpen 2019; 3: 114
- 16 Jain VK, Kumar M. SynOpen 2019; 3: 96
- 17 Chacko S, Ramapanicker R. ChemistrySelect 2016; 1: 4458
- 18 Ahuja BB, Sudalai A. Stud. Nat. Prod. Chem. 2020; 64: 418
- 19 Kristensen TE. Beilstein J. Org. Chem. 2015; 11: 446
- 20 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 21 Vilaivan T, Bhanthumnavin W. Molecules 2010; 15: 917
- 22 Vera S, Landa A, Mielgo A, Ganboa I, Oiarbide M, Soloshonok V. Molecules 2023; 28: 2694
- 23 Kumar P, Dwivedi N. Acc. Chem. Res. 2013; 46: 289
- 24 Venkataramasubramanian V, Chaithanya Kiran IN, Sudalai A. Synlett 2015; 26: 355
- 25 Cambeiro XC, Martín-Rapún R, Miranda PO, Sayalero S, Alza E, Llanes P, Pericàs MA. Beilstein J. Org. Chem. 2011; 7: 1486
- 26 Kotsuki H, Ikishima H, Okuyama A. Heterocycles 2008; 75: 493
- 27 An Y.-J, Wang C.-C, Xu Y.-Z, Wang W.-J, Tao J.-C. Catal. Lett. 2011; 141: 1123
- 28 Agirre M, Arrieta A, Arrastia I, Cossio FP. Chem. Asian J. 2019; 14: 44
- 29 Guo H.-M, Niu H.-Y, Xue M.-X, Guo Q.-X, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Wang J.-J. Green Chem. 2006; 8: 682
- 30 Baumann T, Vogt H, Brase S. Eur. J. Org. Chem. 2007; 266
- 31 Chaudhari PR, Bhise NB, Singh GP, Bhat V, Shenoy GG. J. Chem. Sci. 2022; 134: 56
- 32 Demir AS, Basceken S. Tetrahedron: Asymmetry 2013; 24: 1218
- 33 Cheong PH.-Y, Houk KN. J. Am. Chem. Soc. 2004; 126: 13912
- 34 Poe SL, Bogdan AR, Mason BP, Steinbacher JL, Opalka SM, McQuade DT. J. Org. Chem. 2009; 74: 1574
- 35 Huang K, Huang Z.-Z, Li X.-L. J. Org. Chem. 2006; 71: 8320
- 36 Cui M, Song H, Feng A, Wang Z, Wang Q. J. Org. Chem. 2010; 75: 7018
- 37 Hayashi Y, Yamaguchi J, Sumiya T, Hibino K, Shoji M. J. Org. Chem. 2004; 69: 5966
- 38 Jha V, Kondekar NB, Kumar P. Org. Lett. 2010; 12: 2762
- 39 Hayashi Y, Umekudo N, Hirama T. Org. Lett. 2017; 19: 4155
- 40 Wang H, Yang C, Han K. Struct. Chem. 2006; 17: 97
- 41 Kumar P, Sharma BM. Synlett 2018; 29: 1944
- 42 Panday SK. Tetrahedron: Asymmetry 2011; 22: 1817
- 43 Guillena G, Ramon DJ. Tetrahedron: Asymmetry 2006; 17: 1465
- 44 Kumar P, Pandey M, Gupta P, Dhavale DD. Org. Biomol. Chem. 2012; 10: 1820
- 45 Chowdhury PS, Kumar P. Eur. J. Org. Chem. 2013; 4586
- 46 Fan X, Alza E, Pericàs MA. RSC Adv. 2012; 2: 6164
- 47 Ahuja BB, Sudalai A. Tetrahedron: Asymmetry 2015; 26: 24
- 48 Garg Y, Kaur R, Panday SK. Eur. J. Org. Chem. 2017; 6700