CC BY 4.0 · Indian Journal of Neurosurgery 2023; 12(02): 104-115
DOI: 10.1055/s-0043-1771192
Review Article

H3 K27M-Altered Diffuse Midline Gliomas: A Review

Karol Wiśniewski
1   Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
2   Department of Neurosurgery and Neurooncology, Medical University of Łódź, Łódź, Poland
Andrew Ghaly
1   Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
1   Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
3   Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
1   Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia
4   Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
› Author Affiliations


Diffuse midline glioma H3 K27M-altered is a recently renamed high-grade glioma in the 2021 World Health Organization (WHO) Classification of Central Nervous System Tumors, previously being labelled diffuse midline glioma H3 K27M-mutant in the 2016 update and diffuse intrinsic pontine glioma prior to 2016. After identification of multiple alterations causing H3 K27 hypomethylation, the definition of this tumor subtype was changed. To further characterize this new entity in both the pediatric and adult population, we conducted a review of the current literature, investigating genetic, epidemiological, clinical, radiological, histopathological, treatment and prognostic characteristics, particularly highlighting the differences between adults and children. This tumor is more common in children, and has a poorer prognosis. Additionally, childhood H3 K27-altered gliomas are more common in the brainstem, but more common in the thalamus in adults. Sadly, limited treatment options exist for these tumors, with radiotherapy the only treatment shown to improve overall survival.

Publication History

Article published online:
26 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

  • References

  • 1 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131 (06) 803-820
  • 2 Kurokawa R, Kurokawa M, Baba A. et al. Major Changes in 2021 World Health Organization Classification of Central Nervous System Tumors. Radiographics 2022; 42 (05) 1474-1493
  • 3 Vuong HG, Ngo TNM, Le HT. et al. Prognostic implication of patient age in H3K27M-mutant midline gliomas. Front Oncol 2022; 12: 858148
  • 4 Kathrani N, Chauhan RS, Kotwal A. et al. Diffusion and perfusion imaging biomarkers of H3  K27M mutation status in diffuse midline gliomas. Neuroradiology 2022; 64 (08) 1519-1528
  • 5 Majzner RG, Ramakrishna S, Yeom KW. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022; 603 (7903) 934-941
  • 6 Findlay IJ, De Iuliis GN, Duchatel RJ. et al. Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene 2022; 41 (04) 461-475
  • 7 López-Pérez CA, Franco-Mojica X, Villanueva-Gaona R, Díaz-Alba A, Rodríguez-Florido MA, Navarro VG. Adult diffuse midline gliomas H3  K27-altered: review of a redefined entity. J Neurooncol 2022; 158 (03) 369-378
  • 8 Zheng L, Gong J, Yu T. et al. Diffuse midline gliomas with histone H3  K27M mutation in adults and children: a retrospective series of 164 cases. Am J Surg Pathol 2022; 46 (06) 863-871
  • 9 Damodharan S, Lara-Velazquez M, Williamsen BC, Helgager J, Dey M. Diffuse intrinsic pontine glioma: molecular landscape, evolving treatment strategies and emerging clinical trials. J Pers Med 2022; 12 (05) 840
  • 10 Vuong HG, Le HT, Jea A, McNall-Knapp R, Dunn IF. Risk stratification of H3  K27M-mutant diffuse midline gliomas based on anatomical locations: an integrated systematic review of individual participant data. J Neurosurg Pediatr 2022; 29: 1-8
  • 11 Mount CW, Gonzalez Castro LN. Advances in chimeric antigen receptor (CAR) t-cell therapies for the treatment of primary brain tumors. Antibodies (Basel) 2022; 11 (02) 31
  • 12 Zaytseva M, Usman N, Salnikova E. et al. Methodological challenges of digital PCR detection of the histone H3  K27M somatic variant in cerebrospinal fluid. Pathol Oncol Res 2022; 28: 1610024
  • 13 Raab P, Banan R, Akbarian A. et al. Differences in the MRI signature and ADC values of diffuse midline gliomas with H3  K27M mutation compared to midline glioblastomas. Cancers (Basel) 2022; 14 (06) 1397
  • 14 Guo W, She D, Xing Z. et al. Multiparametric MRI-based radiomics model for predicting H3  K27M mutant status in diffuse midline glioma: a comparative study across different sequences and machine learning techniques. Front Oncol 2022; 12: 796583
  • 15 Hohm A, Karremann M, Gielen GH. et al. Magnetic resonance imaging characteristics of molecular subgroups in pediatric H3  K27M mutant diffuse midline glioma. Clin Neuroradiol 2022; 32 (01) 249-258
  • 16 Ikeda K, Kolakshyapati M, Takayasu T. et al. Diffusion-weighted imaging-gadolinium enhancement mismatch sign in diffuse midline glioma. Eur J Radiol 2022; 147: 110103
  • 17 Su X, Liu Y, Wang H. et al. Multimodal MR imaging signatures to identify brain diffuse midline gliomas with H3  K27M mutation. Cancer Med 2022; 11 (04) 1048-1058
  • 18 Tinkle CL, Broniscer A, Chiang J. et al. Phase I study using crenolanib to target PDGFR kinase in children and young adults with newly diagnosed DIPG or recurrent high-grade glioma, including DIPG. Neurooncol Adv 2021; 3 (01) vdab179
  • 19 Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro-oncol 2021; 23 (12, Suppl 2): iii1-iii105
  • 20 Park C, Kim TM, Bae JM. et al. Clinical and genomic characteristics of adult diffuse midline glioma. Cancer Res Treat 2021; 53 (02) 389-398
  • 21 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 22 Yoon HI, Wee CW, Kim YZ. et al; KSNO Guideline Working Group. The Korean Society for Neuro-Oncology (KSNO) guideline for adult diffuse midline glioma: version 2021.1. Brain Tumor Res Treat 2021; 9 (01) 1-8
  • 23 Gu Q, Huang Y, Zhang H, Jiang B. Case report: five adult cases of H3K27-altered diffuse midline glioma in the spinal cord. Front Oncol 2021; 11: 701113
  • 24 Srikanthan D, Taccone MS, Van Ommeren R, Ishida J, Krumholtz SL, Rutka JT. Diffuse intrinsic pontine glioma: current insights and future directions. Chin Neurosurg J 2021; 7 (01) 6
  • 25 Vuong HG, Le HT, Ngo TNM. et al. H3K27M-mutant diffuse midline gliomas should be further molecularly stratified: an integrated analysis of 669 patients. J Neurooncol 2021; 155 (03) 225-234
  • 26 Seong M, Kim ST, Noh JH, Kim YK, Kim HJ. Radiologic findings and the molecular expression profile of diffuse midline glioma H3  K27M mutant. Acta Radiol 2021; 62 (10) 1404-1411
  • 27 Cheng L, Wang L, Yao Q. et al. Clinicoradiological characteristics of primary spinal cord H3  K27M-mutant diffuse midline glioma. J Neurosurg Spine 2021; 24: 1-12
  • 28 Ishida J, Alli S, Bondoc A. et al. MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma. J Control Release 2021; 330 (330) 1034-1045
  • 29 Hassan U, Latif M, Yousaf I. et al. Morphological spectrum and survival analysis of diffuse midline glioma with H3K27M mutation. Cureus 2021; 13 (08) e17267
  • 30 Banan R, Akbarian A, Samii M. et al. Diffuse midline gliomas, H3  K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS One 2021; 16 (08) e0249647
  • 31 Wang YZ, Zhang YW, Liu WH. et al. Spinal cord diffuse midline gliomas with H3  K27m-mutant: clinicopathological features and prognosis. Neurosurgery 2021; 89 (02) 300-307
  • 32 Santisukwongchote S, Teerapakpinyo C, Chankate P. et al. Simplified approach for pathological diagnosis of diffuse gliomas in adult patients. Pathol Res Pract 2021; 223: 153483
  • 33 Dorfer C, Czech T, Gojo J. et al. Infiltrative gliomas of the thalamus in children: the role of surgery in the era of H3  K27M mutant midline gliomas. Acta Neurochir (Wien) 2021; 163 (07) 2025-2035
  • 34 Abe H, Natsumeda M, Okada M. et al. MGMT expression contributes to temozolomide resistance in H3K27M-mutant diffuse midline gliomas. Front Oncol 2020; 9: 1568
  • 35 Cheng R, Li DP, Zhang N. et al. Spinal cord diffuse midline glioma with histone H3  K27M mutation in a pediatric patient. Front Surg 2021; 8: 616334
  • 36 Ruttens D, Messiaen J, Ferster A. et al. Retrospective study of diffuse intrinsic pontine glioma in the Belgian population: a 25 year experience. J Neurooncol 2021; 153 (02) 293-301
  • 37 Yao J, Wang L, Ge H, Yin H, Piao Y. Diffuse midline glioma with H3  K27M mutation of the spinal cord: a series of 33 cases. Neuropathology 2021; 41 (03) 183-190
  • 38 Li Q, Dong F, Jiang B, Zhang M. Exploring MRI characteristics of brain diffuse midline gliomas with the H3  K27M mutation using radiomics. Front Oncol 2021; 11: 646267
  • 39 Vitanza NA, Biery MC, Myers C. et al. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro-oncol 2021; 23 (03) 376-386
  • 40 Alzoubi H, Maraqa B, Hasasna N. et al. Diffuse midline glioma H3  K27M-mutant in adults: a report of six cases and literature review. Clin Neuropathol 2021; 40 (02) 108-117
  • 41 Thust S, Micallef C, Okuchi S. et al. Imaging characteristics of H3  K27M histone-mutant diffuse midline glioma in teenagers and adults. Quant Imaging Med Surg 2021; 11 (01) 43-56
  • 42 Sanders LM, Cheney A, Seninge L. et al. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9 (12) 136
  • 43 Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 2020; 9: 9
  • 44 Izzuddeen Y, Gupta S, Haresh KP, Sharma D, Giridhar P, Rath GK. Hypofractionated radiotherapy with temozolomide in diffuse intrinsic pontine gliomas: a randomized controlled trial. J Neurooncol 2020; 146 (01) 91-95
  • 45 Castel D, Kergrohen T, Tauziède-Espariat A. et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol 2020; 139 (06) 1109-1113
  • 46 Antin C, Tauziède-Espariat A, Debily MA. et al. EZHIP is a specific diagnostic biomarker for posterior fossa ependymomas, group PFA and diffuse midline gliomas H3-WT with EZHIP overexpression. Acta Neuropathol Commun 2020; 8 (01) 183
  • 47 Pajovic S, Siddaway R, Bridge T. et al. Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11 (01) 6216
  • 48 Dono A, Takayasu T, Ballester LY, Esquenazi Y. Adult diffuse midline gliomas: Clinical, radiological, and genetic characteristics. J Clin Neurosci 2020; 82 (Pt A) 1-8
  • 49 Schulte JD, Buerki RA, Lapointe S. et al. Clinical, radiologic, and genetic characteristics of histone H3  K27M-mutant diffuse midline gliomas in adults. Neurooncol Adv 2020; 2 (01) vdaa142
  • 50 Cooney TM, Lubanszky E, Prasad R, Hawkins C, Mueller S. Diffuse midline glioma: review of epigenetics. J Neurooncol 2020; 150 (01) 27-34
  • 51 Lin GL, Wilson KM, Ceribelli M. et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 2019; 11 (519) 64
  • 52 Garibotto F, Madia F, Milanaccio C. et al. Pediatric diffuse midline gliomas H3  K27M-mutant and non-histone mutant midline high-grade gliomas in neurofibromatosis type 1 in comparison with non-syndromic children: a single-center pilot study. Front Oncol 2020; 10: 795
  • 53 Maeda S, Ohka F, Okuno Y. et al. H3F3A mutant allele specific imbalance in an aggressive subtype of diffuse midline glioma, H3  K27M-mutant. Acta Neuropathol Commun 2020; 8 (01) 8
  • 54 Qiu T, Chanchotisatien A, Qin Z. et al. Imaging characteristics of adult H3  K27M-mutant gliomas. J Neurosurg 2019; 15: 1-9
  • 55 Aboian MS, Tong E, Solomon DA. et al. Diffusion characteristics of pediatric diffuse midline gliomas with histone H3-K27M mutation using apparent diffusion coefficient histogram analysis. AJNR Am J Neuroradiol 2019; 40 (11) 1804-1810
  • 56 Vitanza NA, Monje M. Diffuse intrinsic pontine glioma: from diagnosis to next-generation clinical trials. Curr Treat Options Neurol 2019; 21 (08) 37
  • 57 Colafati GS, Voicu IP, Carducci C. et al. Direct involvement of cranial nerve v at diagnosis in patients with diffuse intrinsic pontine glioma: a potential magnetic resonance predictor of short-term survival. Front Oncol 2019; 9: 204
  • 58 Gallitto M, Lazarev S, Wasserman I. et al. Role of radiation therapy in the management of diffuse intrinsic pontine glioma: a systematic review. Adv Radiat Oncol 2019; 4 (03) 520-531
  • 59 Himes BT, Zhang L, Daniels DJ. Treatment strategies in diffuse midline gliomas with the H3K27M mutation: the role of convection-enhanced delivery in overcoming anatomic challenges. Front Oncol 2019; 9: 31
  • 60 Gojo J, Pavelka Z, Zapletalova D. et al. Personalized treatment of H3K27M-mutant pediatric diffuse gliomas provides improved therapeutic opportunities. Front Oncol 2020; 9: 1436
  • 61 Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers (Basel) 2019; 11 (05) 11
  • 62 Hoeman CM, Cordero FJ, Hu G. et al. ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nat Commun 2019; 10 (01) 1023
  • 63 Uppar AM, Sugur H, Prabhuraj AR. et al. H3K27M, IDH1, and ATRX expression in pediatric GBM and their clinical and prognostic significance. Childs Nerv Syst 2019; 35 (09) 1537-1545
  • 64 Chi AS, Tarapore RS, Hall MD. et al. Pediatric and adult H3  K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol 2019; 145 (01) 97-105
  • 65 Schreck KC, Ranjan S, Skorupan N. et al. Incidence and clinicopathologic features of H3  K27M mutations in adults with radiographically-determined midline gliomas. J Neurooncol 2019; 143 (01) 87-93
  • 66 Yi S, Choi S, Shin DA. et al. Impact of H3.3  K27M mutation on prognosis and survival of grade IV spinal cord glioma on the basis of new 2016 World Health Organization Classification of the Central Nervous System. Neurosurgery 2019; 84 (05) 1072-1081
  • 67 Ebrahimi A, Skardelly M, Schuhmann MU. et al. High frequency of H3  K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol 2019; 145 (04) 839-850
  • 68 Jung JS, Choi YS, Ahn SS, Yi S, Kim SH, Lee SK. Differentiation between spinal cord diffuse midline glioma with histone H3  K27M mutation and wild type: comparative magnetic resonance imaging. Neuroradiology 2019; 61 (03) 313-322
  • 69 Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N. et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and European Society for Pediatric Oncology DIPG registries. J Clin Oncol 2018; 36 (19) 1963-1972
  • 70 Karachi A, Dastmalchi F, Mitchell DA, Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro-oncol 2018; 20 (12) 1566-1572
  • 71 Filbin MG, Tirosh I, Hovestadt V. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018; 360 (6386) 331-335
  • 72 Kleinschmidt-DeMasters BK, Mulcahy Levy JM. H3  K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin Neuropathol 2018; 37 (02) 53-63
  • 73 Wang L, Li Z, Zhang M. et al. H3  K27M-mutant diffuse midline gliomas in different anatomical locations. Hum Pathol 2018; 78: 89-96
  • 74 Benitez-Ribas D, Cabezón R, Flórez-Grau G. et al. Immune response generated with the administration of autologous dendritic cells pulsed with an allogenic tumoral cell-lines lysate in patients with newly diagnosed diffuse intrinsic pontine glioma. Front Oncol 2018; 8: 127
  • 75 Castel D, Philippe C, Kergrohen T. et al. Transcriptomic and epigenetic profiling of ‘diffuse midline gliomas, H3  K27M-mutant’ discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathol Commun 2018; 6 (01) 117
  • 76 Karremann M, Gielen GH, Hoffmann M. et al. Diffuse high-grade gliomas with H3  K27M mutations carry a dismal prognosis independent of tumor location. Neuro-oncol 2018; 20 (01) 123-131
  • 77 Meyronet D, Esteban-Mader M, Bonnet C. et al. Characteristics of H3  K27M-mutant gliomas in adults. Neuro-oncol 2017; 19 (08) 1127-1134
  • 78 Tanaka S, Otani R, Hongo H. et al. PATH-28. Clinical and genetic characteristics of diffuse midline glioma in the spinal cord. Neuro-oncol 2017; 19 (Suppl. 06) 176
  • 79 Banan R, Christians A, Bartels S, Lehmann U, Hartmann C. Absence of MGMT promoter methylation in diffuse midline glioma, H3  K27M-mutant. Acta Neuropathol Commun 2017; 5 (01) 98
  • 80 Gwak HS, Park HJ. Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol Hematol 2017; 120: 111-119
  • 81 Aboian MS, Solomon DA, Felton E. et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3  K27M mutation. AJNR Am J Neuroradiol 2017; 38 (04) 795-800
  • 82 Solomon DA, Wood MD, Tihan T. et al. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016; 26 (05) 569-580
  • 83 Ryall S, Krishnatry R, Arnoldo A. et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun 2016; 4 (01) 93
  • 84 Castel D, Philippe C, Calmon R. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015; 130 (06) 815-827
  • 85 Gessi M, Gielen GH, Dreschmann V, Waha A, Pietsch T. High frequency of H3F3A (K27M) mutations characterizes pediatric and adult high-grade gliomas of the spinal cord. Acta Neuropathol 2015; 130 (03) 435-437
  • 86 Feng J, Hao S, Pan C. et al. The H3.3  K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Hum Pathol 2015; 46 (11) 1626-1632
  • 87 Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J. et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 2014; 46 (05) 462-466
  • 88 Wu G, Diaz AK, Paugh BS. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014; 46 (05) 444-450
  • 89 Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T. H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 2013; 139 (03) 345-349
  • 90 Bender S, Tang Y, Lindroth AM. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013; 24 (05) 660-672
  • 91 Parker JJ, Dionne KR, Massarwa R. et al. Gefitinib selectively inhibits tumor cell migration in EGFR-amplified human glioblastoma. Neuro-oncol 2013; 15 (08) 1048-1057
  • 92 Khuong-Quang DA, Buczkowicz P, Rakopoulos P. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124 (03) 439-447
  • 93 Sturm D, Witt H, Hovestadt V. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (04) 425-437
  • 94 Cohen KJ, Heideman RL, Zhou T. et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's Oncology Group. Neuro-oncol 2011; 13 (04) 410-416
  • 95 Monje M, Mitra SS, Freret ME. et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 2011; 108 (11) 4453-4458
  • 96 Panwalkar P, Clark J, Ramaswamy V. et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 2017; 134 (05) 705-714