J Pediatr Infect Dis 2023; 18(05): 250-255
DOI: 10.1055/s-0043-1770989
Original Article

Antibiofilm Activity of Different Washing Solutions against Biofilms in Cystic Fibrosis Patients' Nasal Cavities

1   Department of Otorhinolaryngology-Head and Neck Surgery, Bursa City Hospital, Mınıstry of Health, Bursa, Türkiye
2   Department of Medical Microbiology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
3   Department of Medical Microbiology, Faculty of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir, Türkiye
2   Department of Medical Microbiology, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye
› Author Affiliations


Objective Bacterial biofilm formation is a multistep process involving bacterial adhesion to inorganic or mucosal surfaces. We aimed to identify Staphylococcus aureus and Pseudomonas aeruginosa strains colonizing the respiratory tracts of cystic fibrosis (CF) patients and to gauge the antibiofilm potential of streptomycin and ozone solutions against them.

Methods Bacteria were obtained from CF patients' sputum samples processed in our microbiology laboratory over 1 year (2021–2022). A total of 26 nonduplicate strains (13 S. aureus and 13 P. aeruginosa) were included in this study.

Results Both ozone and streptomycin solutions showed significant inhibitory activity. However, when faced with mature biofilm, the streptomycin solution had a significantly more substantial impact than the ozone solution. Furthermore, the ozone solution had no inhibitory effect on mature P. aeruginosa biofilm.

Conclusion Ozone and streptomycin solutions might be used as nasal irrigation to eliminate the biofilms in patients with CF in acute respiratory infections. However, our in vitro observations would need to be confirmed in vivo. In chronic inflammation, ozone solution cannot degrade the mature biofilm of P. aeruginosa, whereas streptomycin solution can degrade such biofilms. This result is promising in lessening the biofilms associated with these bacteria that colonize patients with CF.

Publication History

Received: 09 February 2023

Accepted: 31 May 2023

Article published online:
24 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Johnson BJ, Choby GW, O'Brien EK. Chronic rhinosinusitis in patients with cystic fibrosis-current management and new treatments. Laryngoscope Investig Otolaryngol 2020; 5 (03) 368-374
  • 2 Kim YS, Kim NH, Seong SY, Kim KR, Lee GB, Kim KS. Prevalence and risk factors of chronic rhinosinusitis in Korea. Am J Rhinol Allergy 2011; 25 (03) 117-121
  • 3 Xu X, Reitsma S, Wang Y, Fokkens WJ. Highlights in the advances of chronic rhinosinusitis. Allergy 2021; 76 (11) 3349-3358
  • 4 Tóth L, Csomor P, Sziklai I, Karosi T. Biofilm detection in chronic rhinosinusitis by combined application of hematoxylin-eosin and gram staining. Eur Arch Otorhinolaryngol 2011; 268 (10) 1455-1462
  • 5 Lee S, Lane AP. Chronic rhinosinusitis as a multifactorial inflammatory disorder. Curr Infect Dis Rep 2011; 13 (02) 159-168
  • 6 Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52 (04) 1701-1718
  • 7 Fineberg NL. Streptomycin used locally in the care of chronic suppurative maxillary sinusitis; report of a case. Laryngoscope 1948; 58 (06) 545-551
  • 8 Khan F, Lee JW, Pham DTN. et al. Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2020; 104 (02) 799-816
  • 9 Mansouri M, Khayam N, Jamshidifar E. et al. Streptomycin sulfate-loaded niosomes enables increased antimicrobial and anti-biofilm activities. Front Bioeng Biotechnol 2021; 9: 745099
  • 10 Silva V, Peirone C, Amaral JS. et al. High efficacy of ozonated oils on the removal of biofilms produced by methicillin-resistant Staphylococcus aureus (MRSA) from infected diabetic foot ulcers. Molecules 2020; 25 (16) 3601
  • 11 Sabancı AU, Erkan Alkan P, Mujde C. et al. Nanobubble ozone stored in hyaluronic acid decorated liposomes: antibacterial, anti-SARS-CoV-2 effect and biocompatibility tests. Int J Nanomedicine 2022; 17: 351-379
  • 12 Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 2000; 40 (02) 175-179
  • 13 Di Paolo N, Bocci V, Gaggiotti E. Ozone therapy. Int J Artif Organs 2004; 27 (03) 168-175
  • 14 Chusri S, Phatthalung PN, Voravuthikunchai SP. Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus . Lett Appl Microbiol 2012; 54 (06) 511-517
  • 15 Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. . J Microbiol Biotechnol 2019; 29 (08) 1177-1183
  • 16 Ghane M, Babaeekhou L, Ketabi SS. Antibiofilm activity of Kefir Probiotic Lactobacilli against uropathogenic Escherichia coli (UPEC). Avicenna J Med Biotechnol 2020; 12 (04) 221-229
  • 17 Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015; 7 (04) 493-512 Erratum in: Future Med Chem 2015;7(10):1362
  • 18 Nazzari E, Torretta S, Pignataro L, Marchisio P, Esposito S. Role of biofilm in children with recurrent upper respiratory tract infections. Eur J Clin Microbiol Infect Dis 2015; 34 (03) 421-429
  • 19 Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic rhinosinusitis, S. aureus biofilm and secreted products, inflammatory responses, and disease severity. Biomedicines 2022; 10 (06) 1362
  • 20 Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens 2022; 11 (03) 300
  • 21 Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health 2021; 18 (14) 7602
  • 22 Kumar A, Ting YP. Streptomycin favors biofilm formation by altering cell surface properties. Appl Microbiol Biotechnol 2016; 100 (20) 8843-8853
  • 23 Henry-Stanley MJ, Hess DJ, Wells CL. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent. J Med Microbiol 2014; 63 (Pt 6): 861-869
  • 24 Li R, Yuan X, Wei J. et al. Synthesis and evaluation of a chitosan oligosaccharide-streptomycin conjugate against Pseudomonas aeruginosa biofilms. Mar Drugs 2019; 17 (01) 43
  • 25 Jiang Y, Xu Q, Jiang L, Zheng R. Isolation and characterization of a lytic Staphylococcus aureus phage WV against Staphylococcus aureus biofilm. Intervirology 2021; 64 (04) 169-177
  • 26 Zerillo L, Polvere I, Varricchio R. et al. Antibiofilm and repair activity of ozonated oil in liposome. Microb Biotechnol 2022; 15 (05) 1422-1433
  • 27 Panebianco F, Rubiola S, Chiesa F, Civera T, Di Ciccio PA. Effect of gaseous ozone treatment on biofilm of dairy-isolated Pseudomonas spp. strains. Ital J Food Saf 2022; 11 (02) 10350
  • 28 Piletić K, Kovač B, Perčić M. et al. Disinfecting action of gaseous ozone on OXA-48-producing Klebsiella pneumoniae biofilm in vitro. Int J Environ Res Public Health 2022; 19 (10) 6177