Homeopathy 2024; 113(02): 054-066
DOI: 10.1055/s-0043-1769734
Review Article

Understanding Why Homeopathic Medicines are Used for Menopause: Searching for Insights into Neuroendocrine Features

1   Outpatient Homeopathy Service, Hospital Juárez de México, Secretaría de Salud, Mexico City, Mexico
› Author Affiliations


Background Menopause is a physiological event that marks the end of a woman's reproductive stage in life. Vasomotor symptoms and changes in mood are among its most important effects. Homeopathy has been used for many years in treating menopausal complaints, though clinical and pre-clinical research in this field is limited. Homeopathy often bases its prescription on neuropsychiatric symptoms, but it is unknown if homeopathic medicines (HMs) exert a neuroendocrine effect that causes an improvement in vasomotor symptoms and mood during menopause.

Objectives The study's objectives were to address the pathophysiological changes of menopause that could help in the understanding of the possible effect of HMs at a neuroendocrine level, to review the current evidence for two of the most frequently prescribed HMs for menopause (Lachesis mutus and Sepia officinalis), and to discuss the future directions of research in this field.

Methods An extensive literature search for the pathophysiologic events of menopause and depression, as well as for the current evidence for HMs in menopause and depression, was performed.

Results Neuroendocrine changes are involved in the pathophysiology of vasomotor symptoms and changes in mood during menopause. Gonadal hormones modulate neurotransmitter systems. Both play a role in mood disorders and temperature regulation. It has been demonstrated that Gelsemium sempervirens, Ignatia amara and Chamomilla matricaria exert anxiolytic effects in rodent models. Lachesis mutus and Sepia officinalis are frequently prescribed for important neuropsychiatric and vasomotor symptoms. Dopamine, a neurotransmitter involved in mood, is among the constituents of the ink of the common cuttlefish, Sepia officinalis.

Conclusion Based on all the pathophysiologic events of menopause and the improvement in menopausal complaints that certain HMs show in daily practice, these medicines might have a direct or indirect neuroendocrine effect in the body, possibly triggered via an as-yet unidentified biological mechanism. Many unanswered questions in this field require further pre-clinical and clinical research.

Publication History

Received: 10 January 2023

Accepted: 24 March 2023

Article published online:
03 July 2023

© 2023. Faculty of Homeopathy. This article is published by Thieme.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Deecher DC, Dorries K. Understanding the pathophysiology of vasomotor symptoms (hot flushes and night sweats) that occur in perimenopause, menopause, and postmenopause life stages. Arch Women Ment Health 2007; 10: 247-257
  • 2 Santoro N, Roeca C, Peters BA, Neal-Perry G. The menopause transition: signs, symptoms, and management options. J Clin Endocrinol Metab 2021; 106: 1-15
  • 3 Jonas WB, Kaptchuk TJ, Linde K. A critical overview of homeopathy. Ann Intern Med 2003; 138: 393-399
  • 4 Macías-Cortés E. Menopause: questions and answers for improving homeopathic clinical practice. Homeopathy (article published online: 22 November 2022).
  • 5 Bordet MF, Colas A, Marijnen P, Masson J, Trichard M. Treating hot flushes in menopausal women with homeopathic treatment—results of an observational study. Homeopathy 2008; 97: 10-15
  • 6 Nayak C, Singh V, Singh K. et al. Management of distress during climacteric years by homeopathic therapy. J Altern Complement Med 2011; 17: 1037-1042
  • 7 Ruiz-Mandujano ME, García-Vivas J, Luna-Reséndiz R, Ochoa-Bernal F, Sánchez-Monroy V. Evaluación del tratamiento homeopático de mujeres en climaterio entre los 45 y 60 años con la Menopause Rating Scale (MRS). La Homeopatía de México 2019; 88: 28-35
  • 8 Thompson EA, Montgomery A, Douglas D, Reilly D. A pilot, randomized, double-blinded, placebo-controlled trial of individualized homeopathy for symptoms of estrogen withdrawal in breast-cancer survivors. J Altern Complement Med 2005; 11: 13-20
  • 9 Jacobs J, Herman P, Heron K, Olsen S, Vaughters L. Homeopathy for menopausal symptoms in breast cancer survivors: a preliminary randomized controlled trial. J Altern Complement Med 2005; 11: 21-27
  • 10 Heudel PE, Van Praagh-Doreau I, Duvert B. et al. Does a homeopathic medicine reduce hot flushes induced by adjuvant endocrine therapy in localized breast cancer patients? A multicenter randomized placebo-controlled phase III trial. Support Care Cancer 2019; 27: 1879-1889
  • 11 Macías-Cortés E. Menopause is more than hot flashes: what is missing in homeopathic research? A narrative review. Homeopathy 2022; 111: 79-96
  • 12 Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology 2008; 33: 3-17
  • 13 Tournier A, Würtenberger S, Klein SD, Baumgartner S. Physicochemical investigations of homeopathic preparations: a systematic review and bibliometric analysis – Part 3. J Altern Complement Med 2021; 27: 45-57
  • 14 Deecher DC. Physiology of thermoregulatory dysfunction and current approaches to the treatment of vasomotor symptoms. Expert Opin Investig Drugs 2005; 14: 435-448
  • 15 Cabanac M, Massonnet B. Thermoregulatory responses as a function of core temperature in humans. J Physiol 1977; 265: 587-596
  • 16 Hensel H. Neural processes in thermoregulation. Physiol Rev 1973; 53: 948-1017
  • 17 Martin GR. Vascular receptors for 5-hydroxytryptamine: distribution, function and classification. Pharmacol Ther 1994; 62: 283-324
  • 18 Tataryn IV, Lomax P, Bajorek JG, Chesarek W, Meldrum DR, Judd HL. Postmenopausal hot flushes: a disorder of thermoregulation. Maturitas 1980; 2: 101-107
  • 19 Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 2003; 78: 603-612
  • 20 Brooks EM, Morgan AL, Pierzga JM. et al. Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J Appl Physiol 1997; 83: 477-484
  • 21 Joswig M, Hach-Wunderle V, Ziegler R, Nawroth PP. Postmenopausal hormone replacement therapy and the vascular wall: mechanisms of 17 beta-estradiol's effects on vascular biology. Exp Clin Endocrinol Diabetes 1999; 107: 477-487
  • 22 Shanafelt TD, Barton DL, Adjei AA, Loprinzi CL. Pathophysiology and treatment of hot flashes. Mayo Clin Proc 2002; 77: 1207-1218
  • 23 Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10: 1286-1291
  • 24 Santoro N, Brown JR, Adel T, Skurnick JH. Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab 1996; 81: 1495-1501
  • 25 Birge SJ. Estrogen and the brain: implications for menopause management. In: Schneider HPG. ed. Menopause: The State of the Art—in Research and Practice. Parthenon, New York. 2003: 191-195
  • 26 McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev 1999; 20: 279-307
  • 27 McEwen B. Estrogen actions throughout the brain. Recent Prog Horm Res 2002; 57: 357-384
  • 28 Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 1993; 336: 293-306
  • 29 McEwen BS. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 2001; 91: 2785-2801
  • 30 Bachmann GA. Menopausal vasomotor symptoms: a review of causes, effects and evidence-based treatment options. J Reprod Med 2005; 50: 155-165
  • 31 Pecins-Thompson M, Bethea CL. Ovarian steroid regulation of serotonin-1A autoreceptor messenger RNA expression in the dorsal raphe of rhesus macaques. Neuroscience 1999; 89: 267-277
  • 32 Gundlah C, Lu NZ, Bethea CL. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology (Berl) 2002; 160: 271-282
  • 33 Bethea CL, Gundlah C, Mirkes SJ. Ovarian steroid action in the serotonin neural system of macaques. Novartis Found Symp 2000; 230: 112-130 , discussion 130–133
  • 34 Lu NZ, Bethea CL. Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys. Neuropsychopharmacology 2002; 27: 12-24
  • 35 Le Saux M, Di Paolo T. Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J Psychiatry Neurosci 2005; 30: 110-117
  • 36 Blier P. Crosstalk between the norepinephrine and serotonin systems and its role in the antidepressant response. J Psychiatry Neurosci 2001; 26 (Suppl): S3-S10
  • 37 Loprinzi CL, Kugler JW, Sloan JA. et al. Venlafaxine in management of hot flashes in survivors of breast cancer: a randomised controlled trial. Lancet 2000; 356: 2059-2063
  • 38 Loprinzi CL, Sloan JA, Perez EA. et al. Phase III evaluation of fluoxetine for treatment of hot flashes. J Clin Oncol 2002; 20: 1578-1583
  • 39 Stearns V, Slack R, Greep N. et al. Paroxetine is an effective treatment for hot flashes: results from a prospective randomized clinical trial. J Clin Oncol 2005; 23: 6919-6930 . Erratum in: J Clin Oncol 2005; 23:8549
  • 40 Stearns V, Beebe KL, Iyengar M, Dube E. Paroxetine controlled release in the treatment of menopausal hot flashes: a randomized controlled trial. JAMA 2003; 289: 2827-2834
  • 41 Avis NE, Crawford S, Stellato R, Longcope C. Longitudinal study of hormone levels and depression among women transitioning through menopause. Climacteric 2001; 4: 243-249
  • 42 Joffe H, Hall JE, Soares CN. et al. Vasomotor symptoms are associated with depression in perimenopausal women seeking primary care. Menopause 2002; 9: 392-398
  • 43 Blümel JE, Castelo-Branco C, Cancelo MJ. et al. Relationship between psychological complaints and vasomotor symptoms during climacteric. Maturitas 2004; 49: 205-210
  • 44 Avis NE, Brambilla D, McKinlay SM, Vass K. A longitudinal analysis of the association between menopause and depression. Results from the Massachusetts Women's Health Study. Ann Epidemiol 1994; 4: 214-220
  • 45 Cohen LS, Soares CN, Vitonis AF, Otto MW, Harlow BL. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch Gen Psychiatry 2006; 63: 385-390
  • 46 Harlow BL, Cohen LS, Otto MW, Spiegelman D, Cramer DW. Early life menstrual characteristics and pregnancy experiences among women with and without major depression: the Harvard study of moods and cycles. J Affect Disord 2004; 79: 167-176
  • 47 Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007; 64: 327-337
  • 48 Mansour A, Meador-Woodruff JH, Lopez JF, Watson SJ. Biochemical anatomy: insights into the cell biology and pharmacology of the dopamine and serotonin systems in the brain. In: Schatzberg AF, Nemeroff CB. eds. American Psychiatric Press Textbook of Psychoparmacology. 2nd ed. Washington, DC: American Psychiatric Press; 1998: 55-74
  • 49 Treadway MT. The neurobiology of motivational deficits in depression—an update on candidate pathomechanisms. Curr Top Behav Neurosci 2016; 27: 337-355
  • 50 American Psychiatric Association. Practice Guideline for the Treatment of Patients with Major Depression, 2nd ed. Washington, DC: American Psychiatric Association; 2000
  • 51 Fernández-Ruiz JJ, Amor JC, Ramos JA. Time-dependent effects of estradiol and progesterone on the number of striatal dopaminergic D2-receptors. Brain Res 1989; 476: 388-395
  • 52 Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int J Mol Sci 2022; 23: 7989
  • 53 Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71: 171-186
  • 54 Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65: 732-741
  • 55 Raison CL, Miller AH. Is depression an inflammatory disorder?. Curr Psychiatry Rep 2011; 13: 467-475
  • 56 Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism of reward-related learning. Nature 2001; 413: 67-70
  • 57 Frank MJ, Seeberger LC, O'Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 2004; 306: 1940-1943
  • 58 Wieland S, Schindler S, Huber C, Köhr G, Oswald MJ, Kelsch W. Phasic dopamine modifies sensory-driven output of striatal neurons through synaptic plasticity. J Neurosci 2015; 35: 9946-9956
  • 59 Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034-5043
  • 60 Hahnemann S. Organon de la medicina, 6° ed. , Instituto Politécnico Nacional, México; 2001: 306
  • 61 Eizayaga JE. ¿En qué consiste la homeopatía? 3a. ed,. Universidad de Maimónides, Argentina, 2018. Accessed April 4, 2023 at: http://homeos.org/wp-content/uploads/2018/09/En-qu%C3%A9-consiste-la-homeopat%C3%ADa.-Sept2018-1.pdf
  • 62 American Psychiatric Association. Manual Diagnóstico y Estadístico de los Trastornos Mentales DSM-5. México. Editorial Médica Panamericana; 2018
  • 63 Lathoud. Materia médica homeopática. Buenos aires: Editorial Albatros; 1998
  • 64 Bellavite P, Magnani P, Marzotto M, Conforti A. Assays of homeopathic remedies in rodent behavioural and psychopathological models. Homeopathy 2009; 98: 208-227
  • 65 Gupta P, Sundaram EN, Sharma M. et al. Pre-clinical pharmacology: an important aspect in homoeopathic research. Indian J Res Homoeopathy 2018; 12: 164-179
  • 66 Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106: 110049
  • 67 Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology (Berl) 2010; 210: 533-545
  • 68 Bellavite P, Bonafini C, Marzotto M. Experimental neuropharmacology of Gelsemium sempervirens: recent advances and debated issues. J Ayurveda Integr Med 2018; 9: 69-74
  • 69 Marzotto M, Olioso D, Brizzi M, Tononi P, Cristofoletti M, Bellavite P. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens. BMC Complement Altern Med 2014; 14: 104
  • 70 Olioso D, Marzotto M, Moratti E, Brizzi M, Bellavite P. Effects of Gelsemium sempervirens L. on pathway-focused gene expression profiling in neuronal cells. J Ethnopharmacol 2014; 153: 535-539
  • 71 Marzotto M, Conforti A, Magnani P, Zanolin ME, Bellavite P. Effects of Ignatia amara in mouse behavioural models. Homeopathy 2012; 101: 57-67
  • 72 Pinto SA, Bohland E, Coelho CdeP, Morgulis MS, Bonamin LV. An animal model for the study of Chamomilla in stress and depression: pilot study. Homeopathy 2008; 97: 141-144
  • 73 Khuda-Bukhsh AR. Potentized homeopathic drugs act through regulation of gene expression: a hypothesis to explain their mechanism and pathways of action in vivo. Comp Ther Med 1997; 5: 43-46
  • 74 Khuda-Bukhsh AR. Towards understanding molecular mechanisms of action of homeopathic drugs: an overview. Mol Cell Biochem 2003; 253: 339-345
  • 75 Jyoti S, Tandon S. Impact of homeopathic remedies on the expression of lineage differentiation genes: an in vitro approach using embryonic stem cells. Homeopathy 2016; 105: 148-159
  • 76 Demarque D, Jouanny J, Poitevin B, Saint-Jean Y. Farmacología y materia médica homeopática. España. CEDH Edición Francesa; 1997
  • 77 Vijnovsky B. Tratado de Materia Médica Homeopática I, II, III. Buenos Aires. Talleres Gráficos Didot; 1980
  • 78 Draiman M. Las Personalidades Homeopáticas, Vol 1. Buenos Aires: Libros de Edición Argentina; 1991
  • 79 Silva Haad J. Accidentes humanos por las serpientes de los géneros Bothrops y Lachesis . Mem Inst Butantan 1982; 44: 403-423
  • 80 Warrell D. Snakebites in Central and South America epidemiology, clinical features and clinical management. In: Campbell J, Lamar W. eds. The Venomous Reptiles of the Western Hemisphere. Ithaca and London: Comstock Publishing; 709-761
  • 81 Hardy DL, Silva Haad JJ. A review of venom toxicology and epidemiology of envenoming of the bushmaster (Lachesis) with report of a fatal bite. Bull Chic Herp Soc 1998; 33: 113-123
  • 82 Pardal PPO, Souza SM, Monteiro MRCC. et al. Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil. Trans R Soc Trop Med Hyg 2004; 98 (01) 28-42
  • 83 Madrigal M, Sanz L, Flores-Díaz M. et al. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J Proteomics 2012; 77: 280-297
  • 84 Pla D, Sanz L, Molina-Sánchez P. et al. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. J Proteomics 2013; 89: 112-123
  • 85 Junqueira-de-Azevedo IL, Ching AT, Carvalho E. et al. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 2006; 173: 877-889
  • 86 Soares MR, Oliveira-Carvalho AL, Wermelinger LS. et al. Identification of novel bradykinin-potentiating peptides and C-type natriuretic peptide from Lachesis muta venom. Toxicon 2005; 46: 31-38
  • 87 Sanz L, Escolano J, Ferretti M. et al. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics 2008; 71: 46-60
  • 88 Graham RL, Graham C, McClean S. et al. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers. Biochem Biophys Res Commun 2005; 338: 1587-1592
  • 89 Diniz MR, Oliveira EB. Purification and properties of a kininogenin from the venom of Lachesis muta (bushmaster). Toxicon 1992; 30: 247-258
  • 90 Felicori LF, Souza CT, Velarde DT. et al. Kallikrein-like proteinase from bushmaster snake venom. Protein Expr Purif 2003; 30: 32-42
  • 91 Weinberg ML, Felicori LF, Bello CA. et al. Biochemical properties of a bushmaster snake venom serine proteinase (LV-Ka), and its kinin releasing activity evaluated in rat mesenteric arterial rings. J Pharmacol Sci 2004; 96: 333-342
  • 92 Dias L, Rodrigues MA, Rennó AL. et al. Hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon 2016; 123: 1-14
  • 93 Aird SD. Ophidian envenomation strategies and the role of purines. Toxicon 2002; 40: 335-393
  • 94 Giovanni-De-Simone S, Aguiar AS, Gimenez AR, Novellino K, de Moura RS. Purification, properties, and N-terminal amino acid sequence of a kallikrein-like enzyme from the venom of Lachesis muta rhombeata (Bushmaster). J Protein Chem 1997; 16: 809-818
  • 95 Sánchez-Reséndiz. , J. Temas de Investigación en Homeopatía. México: Edición conmemorativa 50 aniversario de Propulsora de Homeopatía. 1991
  • 96 Carlsson A, Waldeck B. A fluorimetric method for the determination of dopamine (3-hydroxytyramine). Acta Physiol Scand 1958; 44: 293-298
  • 97 Sourkes TL, Murphy GF. Determination of catecholamino acids by differential spectrophotofluorimetry. In: Quastel JH. ed. Methods in Medical Research. Chicago: Year Book Med Publ; 1961: 197
  • 98 Seo D, Patrick CJ, Kennealy PJ. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 2008; 13: 383-395
  • 99 Linnoila VM, Virkkunen M. Aggression, suicidality, and serotonin. J Clin Psychiatry 1992; 53 (Suppl): 46-51
  • 100 Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw 2002; 15: 603-616
  • 101 Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 1996; 153: 466-476
  • 102 Wong PT, Feng H, Teo WL. Interaction of the dopaminergic and serotonergic systems in the rat striatum: effects of selective antagonists and uptake inhibitors. Neurosci Res 1995; 23: 115-119
  • 103 De Simoni MG, Dal Toso G, Fodritto F, Sokola A, Algeri S. Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferences. Brain Res 1987; 411: 81-88
  • 104 Fiore G, Poli A, Di Cosmo A, d'Ischia M, Palumbo A. Dopamine in the ink defence system of Sepia officinalis: biosynthesis, vesicular compartmentation in mature ink gland cells, nitric oxide (NO)/cGMP-induced depletion and fate in secreted ink. Biochem J 2004; 378 (Pt 3): 785-791
  • 105 Lucero MT, Farrington H, Gilly WF. Quantification of L-dopa and dopamine in squid ink: implications for chemoreception. Biol Bull 1994; 187: 55-63
  • 106 Russo GL, De Nisco E, Fiore G, Di Donato P, d'Ischia M, Palumbo A. Toxicity of melanin-free ink of Sepia officinalis to transformed cell lines: identification of the active factor as tyrosinase. Biochem Biophys Res Commun 2003; 308: 293-299
  • 107 Prota G, Ortonne JP, Voulot C, Khatchadourian C, Nardi G, Palumbo A. Occurrence and properties of tyrosinase in the ejected ink of Cephalopods. Comp Biochem Physiol 1981; 68: 415-419
  • 108 Artigas F. Future directions for serotonin and antidepressants. ACS Chem Neurosci 2013; 4: 5-8
  • 109 Cowen PJ, Browning M. What has serotonin to do with depression?. World Psychiatry 2015; 14: 158-160
  • 110 Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 2009; 195: 102-108
  • 111 Duman RS. Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 2002; 17 (Suppl. 03) 306-310
  • 112 Mendiola-Quezada R. Bases científicas de la medicina homeopática. Tomo II. México: Instituto Politécnico Naciona; 1996
  • 113 Vickers AJ. Independent replication of pre-clinical research in homeopathy: a systematic review. Forsch Komplementarmed 1999; 6: 311-320
  • 114 Petković A, Chaudhury D. Encore: behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16: 931964
  • 115 Rutten AL, Stolper CF, Lugten RF, Barthels RW. Statistical analysis of six repertory rubrics after prospective assessment applying Bayes' theorem. Homeopathy 2009; 98: 26-34
  • 116 Rutten AL, Stolper CF, Lugten RF, Barthels RW. New repertory, new considerations. Homeopathy 2008; 97: 16-21
  • 117 Rutten AL, Stolper CF, Lugten RF, Barthels RW. Repertory and the symptom loquacity: some results from a pilot study on likelihood ratio. Homeopathy 2004; 93: 190-192
  • 118 Rutten AL, Stolper CF, Lugten RF, Barthels RW. Is assessment of likelihood ratio of homeopathic symptoms possible? A pilot study. Homeopathy 2003; 92: 213-216
  • 119 Rutten AL, Stolper CF, Lugten RF, Barthels RW. Assessing likelihood ratio of clinical symptoms: handling vagueness. Homeopathy 2003; 92: 182-186
  • 120 Bagot RC, Labonté B, Peña CJ, Nestler EJ. Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci 2014; 16: 281-295