Semin Thromb Hemost 2024; 50(02): 224-235
DOI: 10.1055/s-0043-1768935
Review Article

The Role of CD36/GPIV in Platelet Biology

Gerd Bendas
1   Department of Pharmacy, University of Bonn, Bonn, Germany
1   Department of Pharmacy, University of Bonn, Bonn, Germany
2   Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
› Author Affiliations


CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.

Authors' Contributions

Both the authors have provided a substantial, direct, and intellectual contribution to the manuscript and have approved it before publication.

Publication History

Article published online:
16 May 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Nicholson AC, Febbraio M, Han J, Silverstein RL, Hajjar DP. CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci 2000; 902: 128-131 , discussion 131–133
  • 2 Rać ME, Safranow K, Poncyljusz W. Molecular basis of human CD36 gene mutations. Mol Med 2007; 13 (5-6): 288-296
  • 3 Okumura T, Jamieson GA. Platelet glycocalicin. I. Orientation of glycoproteins of the human platelet surface. J Biol Chem 1976; 251 (19) 5944-5949
  • 4 Clemetson KJ, Pfueller SL, Luscher EF, Jenkins CS. Isolation of the membrane glycoproteins of human blood platelets by lectin affinity chromatography. Biochim Biophys Acta 1977; 464 (03) 493-508
  • 5 Ghosh A, Murugesan G, Chen K. et al. Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 2011; 117 (23) 6355-6366
  • 6 Heni M, Müssig K, Machicao F. et al. Variants in the CD36 gene locus determine whole-body adiposity, but have no independent effect on insulin sensitivity. Obesity (Silver Spring) 2011; 19 (05) 1004-1009
  • 7 Hoosdally SJ, Andress EJ, Wooding C, Martin CA, Linton KJ. The human scavenger receptor CD36: glycosylation status and its role in trafficking and function. J Biol Chem 2009; 284 (24) 16277-16288
  • 8 Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med 2014; 46 (06) e99
  • 9 Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2009; 2 (72) re3
  • 10 Berger G, Caen JP, Berndt MC, Cramer EM. Ultrastructural demonstration of CD36 in the alpha-granule membrane of human platelets and megakaryocytes. Blood 1993; 82 (10) 3034-3044
  • 11 Shattil SJ, Brugge JS. Protein tyrosine phosphorylation and the adhesive functions of platelets. Curr Opin Cell Biol 1991; 3 (05) 869-879
  • 12 Ikeda H, Mitani T, Ohnuma M. et al. A new platelet-specific antigen, Naka, involved in the refractoriness of HLA-matched platelet transfusion. Vox Sang 1989; 57 (03) 213-217
  • 13 Yamamoto N, Ikeda H, Tandon NN. et al. A platelet membrane glycoprotein (GP) deficiency in healthy blood donors: Naka- platelets lack detectable GPIV (CD36). Blood 1990; 76 (09) 1698-1703
  • 14 Curtis BR, Aster RH. Incidence of the Nak(a)-negative platelet phenotype in African Americans is similar to that of Asians. Transfusion 1996; 36 (04) 331-334
  • 15 Yamamoto N, Akamatsu N, Sakuraba H, Yamazaki H, Tanoue K. Platelet glycoprotein IV (CD36) deficiency is associated with the absence (type I) or the presence (type II) of glycoprotein IV on monocytes. Blood 1994; 83 (02) 392-397
  • 16 Love-Gregory L, Sherva R, Schappe T. et al. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 2011; 20 (01) 193-201
  • 17 Greenwalt DE, Watt KW, So OY, Jiwani N. PAS IV, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell CD36 (GP IV). Biochemistry 1990; 29 (30) 7054-7059
  • 18 Yue H, Febbraio M, Klenotic PA. et al. CD36 enhances vascular smooth muscle cell proliferation and development of neointimal hyperplasia. Arterioscler Thromb Vasc Biol 2019; 39 (02) 263-275
  • 19 Coraci IS, Husemann J, Berman JW. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 2002; 160 (01) 101-112
  • 20 Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med 2022; 219 (06) e20211314
  • 21 Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 2003; 23 (07) 2665-2674
  • 22 Podrez EA, Febbraio M, Sheibani N. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 2000; 105 (08) 1095-1108
  • 23 Oquendo P, Hundt E, Lawler J, Seed B. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 1989; 58 (01) 95-101
  • 24 Albert ML, Pearce SF, Francisco LM. et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188 (07) 1359-1368
  • 25 Neculai D, Schwake M, Ravichandran M. et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 2013; 504 (7478): 172-176
  • 26 Hsieh FL, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. The structural basis for CD36 binding by the malaria parasite. Nat Commun 2016; 7: 12837
  • 27 Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268 (16) 11811-11816
  • 28 Armesilla AL, Vega MA. Structural organization of the gene for human CD36 glycoprotein. J Biol Chem 1994; 269 (29) 18985-18991
  • 29 Tao N, Wagner SJ, Lublin DM. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J Biol Chem 1996; 271 (37) 22315-22320
  • 30 Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J Biol Chem 2008; 283 (20) 13578-13585
  • 31 Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 1993; 268 (24) 17665-17668
  • 32 Ho M, Hoang HL, Lee KM. et al. Ectophosphorylation of CD36 regulates cytoadherence of Plasmodium falciparum to microvascular endothelium under flow conditions. Infect Immun 2005; 73 (12) 8179-8187
  • 33 Asch AS, Liu I, Briccetti FM. et al. Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science 1993; 262 (5138): 1436-1440
  • 34 Chu LY, Silverstein RL. CD36 ectodomain phosphorylation blocks thrombospondin-1 binding: structure-function relationships and regulation by protein kinase C. Arterioscler Thromb Vasc Biol 2012; 32 (03) 760-767
  • 35 Luiken JJFP, Chanda D, Nabben M, Neumann D, Glatz JFC. Post-translational modifications of CD36 (SR-B2): implications for regulation of myocellular fatty acid uptake. Biochim Biophys Acta 2016; 1862 (12) 2253-2258
  • 36 Hatmi M, Gavaret JM, Elalamy I, Vargaftig BB, Jacquemin C. Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J Biol Chem 1996; 271 (40) 24776-24780
  • 37 Guthmann F, Maehl P, Preiss J, Kolleck I, Rüstow B. Ectoprotein kinase-mediated phosphorylation of FAT/CD36 regulates palmitate uptake by human platelets. Cell Mol Life Sci 2002; 59 (11) 1999-2003
  • 38 Kuda O, Pietka TA, Demianova Z. et al. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J Biol Chem 2013; 288 (22) 15547-15555
  • 39 Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138 (03) 707-717
  • 40 Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6 (01) 41-48
  • 41 Guy E, Kuchibhotla S, Silverstein R, Febbraio M. Continued inhibition of atherosclerotic lesion development in long term Western diet fed CD36o/apoEo mice. Atherosclerosis 2007; 192 (01) 123-130
  • 42 Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RLA. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 2006; 4 (03) 211-221
  • 43 Finnemann SC, Silverstein RL. Differential roles of CD36 and alphavbeta5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium. J Exp Med 2001; 194 (09) 1289-1298
  • 44 Fadok VA, Warner ML, Bratton DL, Henson PM. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 1998; 161 (11) 6250-6257
  • 45 Stuart LM, Deng J, Silver JM. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 2005; 170 (03) 477-485
  • 46 El Khoury JB, Moore KJ, Means TK. et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med 2003; 197 (12) 1657-1666
  • 47 Park L, Zhou J, Zhou P. et al. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2013; 110 (08) 3089-3094
  • 48 Serghides L, Smith TG, Patel SN, Kain KC. CD36 and malaria: friends or foes?. Trends Parasitol 2003; 19 (10) 461-469
  • 49 Zhao L, Li Y, Ding Q, Li Y, Chen Y, Ruan XZ. CD36 senses dietary lipids and regulates lipids homeostasis in the intestine. Front Physiol 2021; 12: 669279
  • 50 Sundaresan S, Shahid R, Riehl TE. et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J 2013; 27 (03) 1191-1202
  • 51 Gaillard D, Laugerette F, Darcel N. et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 2008; 22 (05) 1458-1468
  • 52 Laugerette F, Passilly-Degrace P, Patris B. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 2005; 115 (11) 3177-3184
  • 53 Gomez-Diaz C, Bargeton B, Abuin L. et al. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 2016; 7: 11866
  • 54 Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 2007; 450 (7167): 289-293
  • 55 Febbraio M. CD36 goes native. Arterioscler Thromb Vasc Biol 2008; 28 (07) 1209-1210
  • 56 Yang M, Silverstein RL. CD36 signaling in vascular redox stress. Free Radic Biol Med 2019; 136: 159-171
  • 57 Silverstein RL, Asch AS, Nachman RL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest 1989; 84 (02) 546-552
  • 58 Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem 1989; 264 (13) 7576-7583
  • 59 Febbraio M, Podrez EA, Smith JD. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105 (08) 1049-1056
  • 60 Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24 (12) 2333-2338
  • 61 Nicholson AC, Han J, Febbraio M, Silversterin RL, Hajjar DP. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci 2001; 947: 224-228
  • 62 Ardlie NG, Selley ML, Simons LA. Platelet activation by oxidatively modified low density lipoproteins. Atherosclerosis 1989; 76 (2-3): 117-124
  • 63 van Willigen G, Gorter G, Akkerman JW. LDLs increase the exposure of fibrinogen binding sites on platelets and secretion of dense granules. Arterioscler Thromb 1994; 14 (01) 41-46
  • 64 Carvalho AC, Colman RW, Lees RS. Platelet function in hyperlipoproteinemia. N Engl J Med 1974; 290 (08) 434-438
  • 65 Hassall DG, Forrest LA, Bruckdorfer KR. et al. Influence of plasma lipoproteins on platelet aggregation in a normal male population. Arteriosclerosis 1983; 3 (04) 332-338
  • 66 Bochkov VN, Matchin YG, Fuki IV, Lyakishev AA, Tkachuk VA. Platelets in patients with homozygous familial hypercholesterolemia are sensitive to Ca(2+)-mobilizing activity of low density lipoproteins. Atherosclerosis 1992; 96 (2-3): 119-124
  • 67 Chou DS, Chan CH, Hsiao G. et al. Inhibitory mechanisms of low concentrations of oxidized low-density lipoprotein on platelet aggregation. J Biomed Sci 2006; 13 (03) 333-343
  • 68 Chou DS, Hsiao G, Shen MY. et al. Low concentration of oxidized low density lipoprotein suppresses platelet reactivity in vitro: an intracellular study. Lipids 2004; 39 (05) 433-440
  • 69 Vlasova II, Azizova OA, Lopukhin Yu M. Inhibitor analysis of LDL-induced platelet aggregation. Biochemistry (Mosc) 1997; 62 (03) 307-311
  • 70 Podrez EA, Byzova TV, Febbraio M. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007; 13 (09) 1086-1095
  • 71 Podrez EA, Poliakov E, Shen Z. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 2002; 277 (41) 38503-38516
  • 72 Podrez EA, Poliakov E, Shen Z. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 2002; 277 (41) 38517-38523
  • 73 Puente Navazo MD, Daviet L, Ninio E, McGregor JL. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol 1996; 16 (08) 1033-1039
  • 74 Kar NS, Ashraf MZ, Valiyaveettil M, Podrez EA. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J Biol Chem 2008; 283 (13) 8765-8771
  • 75 Valiyaveettil M, Kar N, Ashraf MZ, Byzova TV, Febbraio M, Podrez EA. Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI. Blood 2008; 111 (04) 1962-1971
  • 76 Assinger A, Koller F, Schmid W. et al. Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 2010; 212 (01) 153-160
  • 77 Assinger A, Schmid W, Eder S, Schmid D, Koller E, Volf I. Oxidation by hypochlorite converts protective HDL into a potent platelet agonist. FEBS Lett 2008; 582 (05) 778-784
  • 78 Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A 1991; 88 (17) 7844-7848
  • 79 Hirao A, Hamaguchi I, Suda T, Yamaguchi N. Translocation of the Csk homologous kinase (Chk/Hyl) controls activity of CD36-anchored Lyn tyrosine kinase in thrombin-stimulated platelets. EMBO J 1997; 16 (09) 2342-2351
  • 80 Nergiz-Unal R, Lamers MME, Van Kruchten R. et al. Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost 2011; 9 (09) 1835-1846
  • 81 Yang M, Li W, Harberg C. et al. Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Adv 2020; 4 (18) 4494-4507
  • 82 Berger M, Wraith K, Woodward C. et al. Dyslipidemia-associated atherogenic oxidized lipids induce platelet hyperactivity through phospholipase Cγ2-dependent reactive oxygen species generation. Platelets 2019; 30 (04) 467-472
  • 83 Patel P, Naik UP. Platelet MAPKs-a 20+ year history: What do we really know?. J Thromb Haemost 2020; 18 (09) 2087-2102
  • 84 Korporaal SJA, Van Eck M, Adelmeijer J. et al. Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A. Arterioscler Thromb Vasc Biol 2007; 27 (11) 2476-2483
  • 85 Korporaal SJA, Gorter G, van Rijn HJM, Akkerman JWN. Effect of oxidation on the platelet-activating properties of low-density lipoprotein. Arterioscler Thromb Vasc Biol 2005; 25 (04) 867-872
  • 86 Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008; 102 (12) 1512-1519
  • 87 Wang H, Wang ZH, Kong J. et al. Oxidized low-density lipoprotein-dependent platelet-derived microvesicles trigger procoagulant effects and amplify oxidative stress. Mol Med 2012; 18 (01) 159-166
  • 88 Karimi P, Rashtchizadeh N. Oxidative versus thrombotic stimulation of platelets differentially activates signalling pathways. J Cardiovasc Thorac Res 2013; 5 (02) 61-65
  • 89 Cameron SJ, Ture SK, Mickelsen D. et al. Platelet extracellular regulated protein kinase 5 is a redox switch and triggers maladaptive platelet responses and myocardial infarct expansion. Circulation 2015; 132 (01) 47-58
  • 90 Yang M, Cooley BC, Li W. et al. Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood 2017; 129 (21) 2917-2927
  • 91 Yang M, Kholmukhamedov A, Schulte ML. et al. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv 2018; 2 (21) 2848-2861
  • 92 Choo HJ, Kholmukhamedov A, Zhou C, Jobe S. Inner mitochondrial membrane disruption links apoptotic and agonist-initiated phosphatidylserine externalization in platelets. Arterioscler Thromb Vasc Biol 2017; 37 (08) 1503-1512
  • 93 Choo HJ, Saafir TB, Mkumba L, Wagner MB, Jobe SM. Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 2012; 32 (12) 2946-2955
  • 94 Aslan JE, Tormoen GW, Loren CP, Pang J, McCarty OJT. S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation. Blood 2011; 118 (11) 3129-3136
  • 95 Wraith KS, Magwenzi S, Aburima A, Wen Y, Leake D, Naseem KM. Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways. Blood 2013; 122 (04) 580-589
  • 96 Hashimoto Y, Sasaki H, Togo M. et al. Roles of myosin light-chain kinase in platelet shape change and aggregation. Biochim Biophys Acta 1994; 1223 (02) 163-169
  • 97 Chen K, Li W, Major J, Rahaman SO, Febbraio M, Silverstein RL. Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood 2011; 117 (21) 5744-5750
  • 98 Colas R, Sassolas A, Guichardant M. et al. LDL from obese patients with the metabolic syndrome show increased lipid peroxidation and activate platelets. Diabetologia 2011; 54 (11) 2931-2940
  • 99 Magwenzi S, Woodward C, Wraith KS. et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood 2015; 125 (17) 2693-2703
  • 100 Massberg S, Sausbier M, Klatt P. et al. Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 1999; 189 (08) 1255-1264
  • 101 Assinger A, Koller F, Schmid W, Zellner M, Koller E, Volf I. Hypochlorite-oxidized LDL induces intraplatelet ROS formation and surface exposure of CD40L – a prominent role of CD36. Atherosclerosis 2010; 213 (01) 129-134
  • 102 Berger M, Raslan Z, Aburima A. et al. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: the role of phosphodiesterase 3A. Haematologica 2020; 105 (03) 808-819
  • 103 Raslan Z, Naseem KM. The control of blood platelets by cAMP signalling. Biochem Soc Trans 2014; 42 (02) 289-294
  • 104 Yan R, Li S, Dai K. The critical roles of cyclic AMP/cyclic AMP-dependent protein kinase in platelet physiology. Front Biol China 2009; 4 (01) 7-14
  • 105 Hunter RW, Mackintosh C, Hers I. Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets. J Biol Chem 2009; 284 (18) 12339-12348
  • 106 Frieda S, Pearce A, Wu J, Silverstein RL. Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J Biol Chem 1995; 270 (07) 2981-2986
  • 107 Leung LL, Li WX, McGregor JL, Albrecht G, Howard RJ. CD36 peptides enhance or inhibit CD36-thrombospondin binding. A two-step process of ligand-receptor interaction. J Biol Chem 1992; 267 (25) 18244-18250
  • 108 Bergseth G, Lappegård KT, Videm V, Mollnes TE. A novel enzyme immunoassay for plasma thrombospondin. Comparison with beta-thromboglobulin as platelet activation marker in vitro and in vivo. Thromb Res 2000; 99 (01) 41-50
  • 109 Greening DW, Glenister KM, Kapp EA. et al. Comparison of human platelet membrane-cytoskeletal proteins with the plasma proteome: towards understanding the platelet-plasma nexus. Proteomics Clin Appl 2008; 2 (01) 63-77
  • 110 Aburima A, Berger M, Spurgeon BEJ. et al. Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets. Blood 2021; 137 (05) 678-689
  • 111 Roberts W, Magwenzi S, Aburima A, Naseem KM. Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood 2010; 116 (20) 4297-4306
  • 112 Isenberg JS, Romeo MJ, Yu C. et al. Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 2008; 111 (02) 613-623
  • 113 Dorahy DJ, Thorne RF, Fecondo JV, Burns GF. Stimulation of platelet activation and aggregation by a carboxyl-terminal peptide from thrombospondin binding to the integrin-associated protein receptor. J Biol Chem 1997; 272 (02) 1323-1330
  • 114 Chung J, Wang XQ, Lindberg FP, Frazier WA. Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in alpha2beta1-mediated platelet activation. Blood 1999; 94 (02) 642-648
  • 115 Kuijpers MJE, de Witt S, Nergiz-Unal R. et al. Supporting roles of platelet thrombospondin-1 and CD36 in thrombus formation on collagen. Arterioscler Thromb Vasc Biol 2014; 34 (06) 1187-1192
  • 116 Jurk K, Clemetson KJ, de Groot PG. et al. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 2003; 17 (11) 1490-1492
  • 117 Chung J, Gao AG, Frazier WA. Thrombospondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 1997; 272 (23) 14740-14746
  • 118 Fujimoto TT, Katsutani S, Shimomura T, Fujimura K. Thrombospondin-bound integrin-associated protein (CD47) physically and functionally modifies integrin alphaIIbbeta3 by its extracellular domain. J Biol Chem 2003; 278 (29) 26655-26665
  • 119 Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ, Frazier WA. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 1996; 271 (01) 21-24
  • 120 Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 1996; 135 (02) 533-544
  • 121 Tulasne D, Judd BA, Johansen M. et al. C-terminal peptide of thrombospondin-1 induces platelet aggregation through the Fc receptor gamma-chain-associated signaling pathway and by agglutination. Blood 2001; 98 (12) 3346-3352
  • 122 Mumby SM, Raugi GJ, Bornstein P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol 1984; 98 (02) 646-652
  • 123 Lahav J, Lawler J, Gimbrone MA. Thrombospondin interactions with fibronectin and fibrinogen. Mutual inhibition in binding. Eur J Biochem 1984; 145 (01) 151-156
  • 124 Lahav J, Schwartz MA, Hynes RO. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen. Cell 1982; 31 (01) 253-262
  • 125 Bonnefoy A, Daenens K, Feys HB. et al. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 2006; 107 (03) 955-964
  • 126 Döhrmann M, Makhoul S, Gross K. et al. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J 2020; 34 (07) 9337-9357
  • 127 Ghosh A, Li W, Febbraio M. et al. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 2008; 118 (05) 1934-1943
  • 128 Falati S, Liu Q, Gross P. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003; 197 (11) 1585-1598
  • 129 Berger M, Naseem KM. Oxidised low-density lipoprotein-induced platelet hyperactivity-receptors and signalling mechanisms. Int J Mol Sci 2022; 23 (16) 9199