Semin Thromb Hemost 2024; 50(02): 169-181
DOI: 10.1055/s-0043-1762893
Review Article

Assessment of Hemostatic Profile in Neonates with Intrauterine Growth Restriction: A Systematic Review of Literature

Eleni Karapati*
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
Rozeta Sokou*
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
2   Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikaia, Piraeus, Greece
Zoi Iliodromiti
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
Marina Tsaousi
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
Alma Sulaj
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
3   Laboratory of Haematology and Blood Bank Unit, School of Medicine, National and Kapodistrian University of Athens, “Attiko” Hospital, Athens, Greece
Chrysa Petropoulou
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
Abraham Pouliakis
4   Second Department of Pathology, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
Argirios E. Tsantes
3   Laboratory of Haematology and Blood Bank Unit, School of Medicine, National and Kapodistrian University of Athens, “Attiko” Hospital, Athens, Greece
Theodora Boutsikou
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
Nicoletta Iacovidou
1   Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
› Author Affiliations


Intrauterine growth restriction (IUGR) affects nearly 10 to 15% of pregnancies and is responsible for many short- and long-term adverse consequences, including hemostatic derangement. Both thrombotic and hemorrhagic events are described in the perinatal period in these neonates. The aim of this study was to systematically review the literature on the laboratory studies used to evaluate the hemostatic system of the IUGR small for gestational age neonate. We reviewed the current literature via PubMed and Scopus until September 2022. Following our inclusion/exclusion criteria, we finally included 60 studies in our review. Thrombocytopenia, characterized as hyporegenerative and a kinetic upshot of reduced platelet production due to in utero chronic hypoxia, was the main finding of most studies focusing on growth-restricted neonates, in most cases is mild and usually resolves spontaneously with the first 2 weeks of life. In regard to coagulation, growth-restricted newborns present with prolonged standard coagulation tests. Data regarding coagulation factors, fibrinolytic system, and anticoagulant proteins are scarce and conflicting, mainly due to confounding factors. As thromboelastography/rotational thromboelastometry (TEG/ROTEM) provides a more precise evaluation of the in vivo coagulation process compared with standard coagulation tests, its use in transfusion guidance is fundamental. Only one study regarding TEG/ROTEM was retrieved from this population, where no difference in ROTEM parameters compared with appropriate for gestational age neonates was found. Despite the laboratory aberrations, no correlation could be achieved with clinical manifestations of bleeding or thrombosis in the studies included. More studies are needed to assess hemostasis in IUGR neonates and guide targeted therapeutic interventions.

* These authors are the co-first authors of this article.

Publication History

Article published online:
17 February 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Colella M, Frérot A, Novais ARB, Baud O. Neonatal and long-term consequences of fetal growth restriction. Curr Pediatr Rev 2018; 14 (04) 212-218
  • 2 Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction—part 1. J Matern Fetal Neonatal Med 2016; 29 (24) 3977-3987
  • 3 Sharma D, Farahbakhsh N, Shastri S, Sharma P. Intrauterine growth restriction—part 2. J Matern Fetal Neonatal Med 2016; 29 (24) 4037-4048
  • 4 Fung C, Zinkhan E. Short- and long-term implications of small for gestational age. Obstet Gynecol Clin North Am 2021; 48 (02) 311-323
  • 5 Longo S, Bollani L, Decembrino L, Di Comite A, Angelini M, Stronati M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 2013; 26 (03) 222-225
  • 6 Minior VK, Divon MY. Fetal growth restriction at term: myth or reality?. Obstet Gynecol 1998; 92 (01) 57-60
  • 7 Liu J, Wang XF, Wang Y, Wang HW, Liu Y. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from Mainland China. Medicine (Baltimore) 2014; 93 (27) e210
  • 8 Aucott SW, Donohue PK, Northington FJ. Increased morbidity in severe early intrauterine growth restriction. J Perinatol 2004; 24 (07) 435-440
  • 9 Watts T, Roberts I. Haematological abnormalities in the growth-restricted infant. Semin Neonatol 1999; 4 (01) 41-54
  • 10 Ozyürek E, Cetintaş S, Ceylan T. et al. Complete blood count parameters for healthy, small-for-gestational-age, full-term newborns. Clin Lab Haematol 2006; 28 (02) 97-104
  • 11 Hannam S, Lees C, Edwards RJ, Greenough A. Neonatal coagulopathy in preterm, small-for-gestational-age infants. Biol Neonate 2003; 83 (03) 177-181
  • 12 Politou M, Mougiou V, Kollia M. et al. High-risk pregnancies and their impact on neonatal primary hemostasis. Semin Thromb Hemost 2020; 46 (04) 435-445
  • 13 Hochart A, Nuytten A, Pierache A. et al. Hemostatic profile of infants with spontaneous prematurity: can we predict intraventricular hemorrhage development?. Ital J Pediatr 2019; 45 (01) 113
  • 14 Mitsiakos G, Papaioannou G, Papadakis E. et al. Haemostatic profile of full-term, healthy, small for gestational age neonates. Thromb Res 2009; 124 (03) 288-291
  • 15 Tsaousi M, Iliodromiti Z, Iacovidou N. et al. Hemostasis in neonates with perinatal hypoxia-laboratory approach: a systematic review. Semin Thromb Hemost 2022
  • 16 Narang S, Roy J, Stevens TP, Butler-O'Hara M, Mullen CA, D'Angio CT. Risk factors for umbilical venous catheter-associated thrombosis in very low birth weight infants. Pediatr Blood Cancer 2009; 52 (01) 75-79
  • 17 Butler-O'Hara M, Buzzard CJ, Reubens L, McDermott MP, DiGrazio W, D'Angio CT. A randomized trial comparing long-term and short-term use of umbilical venous catheters in premature infants with birth weights of less than 1251 grams. Pediatrics 2006; 118 (01) e25-e35
  • 18 Bhat R, Kwon S, Zaniletti I, Murthy K, Liem RI. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: a multicentre case-control study. Lancet Haematol 2022; 9 (03) e200-e207
  • 19 Reibel NJ, Dame C, Bührer C, Muehlbacher T. Aberrant hematopoiesis and morbidity in extremely preterm infants with intrauterine growth restriction. Front Pediatr 2021; 9: 728607
  • 20 Çaksen H, Köseoğlu FT, Güven AS, Altunhan H, İyisoy MS, Açıkgözoğlu S. Risk and prognostic factors in perinatal hemorrhagic stroke. Ann Indian Acad Neurol 2021; 24 (02) 227-233
  • 21 Cole L, Dewey D, Letourneau N. et al. Clinical characteristics, risk factors, and outcomes associated with neonatal hemorrhagic stroke a population-based case-control study. JAMA Pediatr 2017; 171 (03) 230-238
  • 22 Leon RL, Kalvacherla V, Andrews MM, Thomas JM, Mir IN, Chalak LF. Placental pathologic lesions associated with stroke in term neonates. Front Endocrinol (Lausanne) 2022; 13: 920680
  • 23 Duppré P, Sauer H, Giannopoulou EZ. et al. Cellular and humoral coagulation profiles and occurrence of IVH in VLBW and ELWB infants. Early Hum Dev 2015; 91 (12) 695-700
  • 24 Rocha CO, Bittar RE, Zugaib M. Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstet Gynecol Int 2010; 2010: 231842
  • 25 Fustolo-Gunnink SF, Vlug RD, Smits-Wintjens VE. et al. Early-onset thrombocytopenia in small-for-gestational-age neonates: a retrospective cohort study. PLoS One 2016; 11 (05) e0154853
  • 26 Zisk JL, Mackley A, Christensen RD, Paul DA. Is a small platelet mass associated with intraventricular hemorrhage in very low-birth-weight infants?. J Perinatol 2011; 31 (12) 776-779
  • 27 Go H, Ohto H, Nollet KE. et al. Risk factors and treatments for disseminated intravascular coagulation in neonates. Ital J Pediatr 2020; 46 (01) 54
  • 28 Sharma A, Thapar K. A prospective observational study of thrombocytopenia in high risk neonates in a tertiary care teaching hospital. Sri Lanka J Child Health 2015; 44 (04) 213-219
  • 29 Ray RK, Panda S, Patnaik R, Sarangi G. A study of neonatal thrombocytopenia in a tertiary care hospital: a prospective study. J Nematol 2018; 32 (01) 6-11
  • 30 Rolim ACB, Lambert MA, Borges JPG. et al. Blood cells profile in umbilical cord of late preterm and term newborns. Rev Paul Pediatr 2019; 37 (03) 264-274
  • 31 McIntosh N, Kempson C, Tyler RM. Blood counts in extremely low birthweight infants. Arch Dis Child 1988; 63 (01) 74-76
  • 32 Zook KJ, Mackley AB, Kern J, Paul DA. Hematologic effects of placental pathology on very low birthweight infants born to mothers with preeclampsia. J Perinatol 2009; 29 (01) 8-12
  • 33 Gupta A, Mathai SS, Kanitkar M. Incidence of thrombocytopenia in the neonatal intensive care unit. Med J Armed Forces India 2011; 67 (03) 234-236
  • 34 Tsao PN, Wei SC, Su YN, Chou HC, Chen CY, Hsieh WS. Excess soluble fms-like tyrosine kinase 1 and low platelet counts in premature neonates of preeclamptic mothers. Pediatrics 2005; 116 (02) 468-472
  • 35 Gupta AK, Kumari S, Singhal A, Bahl A. Neonatal thrombocytopenia and platelets transfusion. Asian J Transfus Sci 2012; 6 (02) 161-164
  • 36 Engineer N, Kumar S. Perinatal variables and neonatal outcomes in severely growth restricted preterm fetuses. Acta Obstet Gynecol Scand 2010; 89 (09) 1174-1181
  • 37 Beiner ME, Simchen MJ, Sivan E, Chetrit A, Kuint J, Schiff E. Risk factors for neonatal thrombocytopenia in preterm infants. Am J Perinatol 2003; 20 (01) 49-54
  • 38 Van den Hof MC, Nicolaides KH. Platelet count in normal, small, and anemic fetuses. Am J Obstet Gynecol 1990; 162 (03) 735-739
  • 39 Tsao PN, Teng RJ, Chou HC, Tsou KI. The thrombopoietin level in the cord blood in premature infants born to mothers with pregnancy-induced hypertension. Biol Neonate 2002; 82 (04) 217-221
  • 40 Shuper A, Mimouni F, Merlob P, Zaizov R, Reisner SH. Thrombocytopenia in small-for-gestational-age infants. Acta Paediatr Scand 1983; 72 (01) 139-140
  • 41 Meberg A, Halvorsen S, Orstavik I. Transitory thrombocytopenia in small-for-date infants, possibly related to maternal smoking. Lancet 1977; 2 (8032): 303-304
  • 42 Go H, Ohto H, Nollet KE. et al. Perinatal factors affecting platelet parameters in late preterm and term neonates. PLoS One 2020; 15 (11) e0242539
  • 43 Wasiluk A, Dabrowska M, Osada J, Jasinska E, Laudanski T, Redzko S. Platelet indices in SGA newborns. Adv Med Sci 2011; 56 (02) 361-365
  • 44 Ayadi ID, Hamida EB, Youssef A, Sdiri Y, Marrakchi Z. Prevalence and outcomes of thrombocytopenia in a neonatal intensive care unit. Tunis Med 2016; 94 (04) 305-308
  • 45 Ulusoy E, Tüfekçi O, Duman N, Kumral A, İrken G, Ören H. Thrombocytopenia in neonates: causes and outcomes. Ann Hematol 2013; 92 (07) 961-967
  • 46 Christensen RD, Henry E, Wiedmeier SE. et al. Thrombocytopenia among extremely low birth weight neonates: data from a multihospital healthcare system. J Perinatol 2006; 26 (06) 348-353
  • 47 Vlug RD, Lopriore E, Janssen M, Middeldorp JM, Rath MEA, Smits-Wintjens VEHJ. Thrombocytopenia in neonates with polycythemia: incidence, risk factors and clinical outcome. Expert Rev Hematol 2015; 8 (01) 123-129
  • 48 Christensen RD, Baer VL, Henry E, Snow GL, Butler A, Sola-Visner MC. Thrombocytopenia in small-for-gestational-age infants. Pediatrics 2015; 136 (02) e361-e370
  • 49 Lee E, Lim Z, Malhotra A. Thrombocytopenia in well small for gestational age neonates. Blood Coagul Fibrinolysis 2019; 30 (03) 104-110
  • 50 Yuko S, Takeda T, Hirota A. et al. Examination of the percentage of immature platelet fraction in term and preterm infants at birth. J Clin Neonatol 2013; 2 (04) 173-178
  • 51 MacQueen BC, Christensen RD, Henry E. et al. The immature platelet fraction: creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J Perinatol 2017; 37 (07) 834-838
  • 52 Takeshita S, Kakita H, Asai S. et al. Thrombocytopenia and insufficient thrombopoietin production in human small-for-gestational-age infants. Pediatr Res 2022
  • 53 Sola MC, Calhoun DA, Hutson AD, Christensen RD. Plasma thrombopoietin concentrations in thrombocytopenic and non-thrombocytopenic patients in a neonatal intensive care unit. Br J Haematol 1999; 104 (01) 90-92
  • 54 Meberg A, Jakobsen E, Halvorsen K. Humoral regulation of erythropoiesis and thrombopoiesis in appropriate and small for gestational age infants. Acta Paediatr Scand 1982; 71 (05) 769-773
  • 55 Wasiluk A, Mantur M, Kemona H, Szczepański M, Jasińska E, Milewski R. Thrombopoiesis in small for gestational age newborns. Platelets 2009; 20 (07) 520-524
  • 56 Wasiluk A, Kemona H, Mantur M, Polewko A, Ozimirski A, Milewski R. Expression of P-selectin (CD62P) on platelets after thrombin and ADP in hypotrophic and healthy, full-term newborns. J Matern Fetal Neonatal Med 2013; 26 (13) 1321-1324
  • 57 Kollia M, Iacovidou N, Iliodromiti Z. et al. Primary hemostasis in fetal growth restricted neonates studied via PFA-100 in cord blood samples. Front Pediatr 2022; 10: 946932
  • 58 Strauss T, Elisha N, Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis 2017; 67: 14-17
  • 59 Baschat AA, Kush M, Berg C. et al. Hematologic profile of neonates with growth restriction is associated with rate and degree of prenatal Doppler deterioration. Ultrasound Obstet Gynecol 2013; 41 (01) 66-72
  • 60 Maruyama H, Shinozuka M, Kondoh Y. et al. Thrombocytopenia in preterm infants with intrauterine growth restriction. Acta Med Okayama 2008; 62 (05) 313-317
  • 61 Martinelli S, Francisco RPV, Bittar RE, Zugaib M. Hematological indices at birth in relation to arterial and venous Doppler in small-for-gestational-age fetuses. Acta Obstet Gynecol Scand 2009; 88 (08) 888-893
  • 62 Jang DG, Jo YS, Lee SJ, Kim N, Lee GSR. Perinatal outcomes and maternal clinical characteristics in IUGR with absent or reversed end-diastolic flow velocity in the umbilical artery. Arch Gynecol Obstet 2011; 284 (01) 73-78
  • 63 Kush ML, Gortner L, Harman CR, Baschat AA. Sustained hematological consequences in the first week of neonatal life secondary to placental dysfunction. Early Hum Dev 2006; 82 (01) 67-72
  • 64 Perlman M, Dvilansky A. Blood coagulation status of small-for-dates and postmature infants. Arch Dis Child 1975; 50 (06) 424-430
  • 65 Neary E, McCallion N, Kevane B. et al. Coagulation indices in very preterm infants from cord blood and postnatal samples. J Thromb Haemost 2015; 13 (11) 2021-2030
  • 66 Barnard DR, Simmons MA, Hathaway WE. Coagulation studies in extremely premature infants. Pediatr Res 1979; 13 (12) 1330-1335
  • 67 Salonvaara M, Riikonen P, Kekomäki R. et al. Effects of gestational age and prenatal and perinatal events on the coagulation status in premature infants. Arch Dis Child Fetal Neonatal Ed 2003; 88 (04) F319-F323
  • 68 Dube B, Dube RK, Bhargava V, Kolindewala JK, Kota VL, Das BK. Hemostatic parameters in newborn—I. Effect of gestation and rate of intrauterine growth. Thromb Haemost 1986; 55 (01) 47-50
  • 69 Ekelund H, Finnström O. Fibrinolysis in pre-term infants and in infants small for gestational age. Acta Paediatr Scand 1972; 61 (02) 185-196
  • 70 Mitsiakos G, Giougi E, Chatziioannidis I. et al. Haemostatic profile of healthy premature small for gestational age neonates. Thromb Res 2010; 126 (02) 103-106
  • 71 Abdollahi A, Sheikhbahaei S, Hafezi-Nejad N, Mahdaviani B. Hemostatic profile in healthy premature neonates; does birth weight affect the coagulation profile?. J Clin Neonatol 2014; 3 (02) 89-92
  • 72 Neary E, Okafor I, Al-Awaysheh F. et al. Laboratory coagulation parameters in extremely premature infants born earlier than 27 gestational weeks upon admission to a neonatal intensive care unit. Neonatology 2013; 104 (03) 222-227
  • 73 Fuse Y. Small-for-gestational-age (SGA) neonates: a study of blood coagulation and fibrinolysis. Asia Oceania J Obstet Gynaecol 1986; 12 (02) 291-299
  • 74 Pietersma-de Bruyn AL, van der Straaten PJ, van Haard PM, Kuijpers JC, Hamulyák K, Ruys JH. Vitamin K1 levels and K1-dependent coagulation factors II and X in preterm and small-for-date neonates. Eur J Pediatr 1990; 149 (09) 640-644
  • 75 Peters M, ten Cate JW, Koo LH, Breederveld C. Persistent antithrombin III deficiency: risk factor for thromboembolic complications in neonates small for gestational age. J Pediatr 1984; 105 (02) 310-314
  • 76 Sokou R, Konstantinidi A, Stefanaki C. et al. Thromboelastometry: studying hemostatic profile in small for gestational age neonates-a pilot observational study. Eur J Pediatr 2019; 178 (04) 551-557
  • 77 Paes B, Nagel K, Chan A. Neonatal thrombocytopenia: etiology and management. In: Thrombocytopenia: Causes, Diagnosis and Treatment. 2012: 125-195
  • 78 Murray NA. Evaluation and treatment of thrombocytopenia in the neonatal intensive care unit. Acta Paediatr Suppl 2002; 91 (438) 74-81
  • 79 Sciscione AC, Bessos H, Callan N, Blakemore K, Kickler T. Indicators of platelet turnover in thrombocytopenic infants. Br J Obstet Gynaecol 1997; 104 (06) 743-745
  • 80 Koyama N, Ohama Y, Kaneko K. et al. Association of neonatal thrombocytopenia and maternal anti-HLA antibodies. Acta Paediatr Jpn 1991; 33 (01) 71-76
  • 81 Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol 1990; 12 (01) 95-104
  • 82 Christensen RD, Henry E, Del Vecchio A. Thrombocytosis and thrombocytopenia in the NICU: incidence, mechanisms and treatments. J Matern Fetal Neonatal Med 2012; 25 (4, Suppl 4): 15-17
  • 83 Thanhaeuser M, Binder C, Derhaschnig U. et al. Can sequential coagulation monitoring predict major haemorrhage in extremely low birth weight infants?. Thromb Haemost 2018; 118 (07) 1185-1193
  • 84 Sokou R, Parastatidou S, Konstantinidi A. et al. Fresh frozen plasma transfusion in the neonatal population: a systematic review. Blood Rev 2022; 55: 100951
  • 85 Mauch J, Spielmann N, Hartnack S. et al. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul Fibrinolysis 2011; 22 (08) 662-666
  • 86 Georgiadou P, Sokou R, Tsantes AG. et al. The non-activated thromboelastometry (NATEM) assay's application among adults and neonatal/pediatric population: a systematic review. Diagnostics (Basel) 2022; 12 (03) 658
  • 87 Konstantinidi A, Sokou R, Parastatidou S. et al. Clinical application of thromboelastography/thromboelastometry (TEG/TEM) in the neonatal population: a narrative review. Semin Thromb Hemost 2019; 45 (05) 449-457
  • 88 Sulaj A, Tsaousi M, Karapati E. et al. Reference values of thromboelastometry parameters in healthy term neonates using NATEM in cord blood samples. Children (Basel) 2022; 9 (01) 47
  • 89 Strauss T, Levy-Shraga Y, Ravid B. et al. Clot formation of neonates tested by thromboelastography correlates with gestational age. Thromb Haemost 2010; 103 (02) 344-350
  • 90 Liu Q, Xu C, Chen X, Wang J, Ke Z, Hu H. Establishing a reference range for thromboelastograph parameters in the neonatal period. Int J Lab Hematol 2019; 41 (04) 530-535
  • 91 Theodoraki M, Sokou R, Valsami S. et al. Reference values of thrombolastometry parameters in healthy term neonates. Children (Basel) 2020; 7 (12) 259
  • 92 Sokou R, Foudoulaki-Paparizos L, Lytras T. et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin Chem Lab Med 2017; 55 (10) 1592-1597
  • 93 Katsaras GN, Sokou R, Tsantes AG. et al. The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: a systematic review. Eur J Pediatr 2021; 180 (12) 3455-3470
  • 94 Sokou R, Piovani D, Konstantinidi A. et al. A risk score for predicting the incidence of hemorrhage in critically ill neonates: development and validation study. Thromb Haemost 2021; 121 (02) 131-139
  • 95 Katsaras GN, Sokou R, Tsantes AG. et al. Thromboelastometry in neonates with respiratory distress syndrome: a pilot study. Diagnostics (Basel) 2021; 11 (11) 1995
  • 96 Konstantinidi A, Sokou R, Tsantes AG. et al. Thromboelastometry variables in neonates with perinatal hypoxia. Semin Thromb Hemost 2020; 46 (04) 428-434
  • 97 Lampridou M, Sokou R, Tsantes AG. et al. ROTEM diagnostic capacity for measuring fibrinolysis in neonatal sepsis. Thromb Res 2020; 192: 103-108
  • 98 Parastatidou S, Sokou R, Tsantes AG. et al. The role of ROTEM variables based on clot elasticity and platelet component in predicting bleeding risk in thrombocytopenic critically ill neonates. Eur J Haematol 2021; 106 (02) 175-183
  • 99 Sokou R, Georgiadou P, Tsantes AG. et al. The utility of NATEM assay in predicting bleeding risk in critically ill neonates. Semin Thromb Hemost 2022; DOI: 10.1055/s-0042-1753513.
  • 100 Sokou R, Giallouros G, Konstantinidi A. et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: an observational study. Eur J Pediatr 2018; 177 (03) 355-362
  • 101 Sokou R, Ioakeimidis G, Piovani D. et al. Development and validation of a sepsis diagnostic scoring model for neonates with suspected sepsis. Front Pediatr 2022; 10: 1004727
  • 102 Sokou R, Konstantinidi A, Tsante KA. et al. The impact of maternal smoking during pregnancy on hemostatic profile of neonates using thromboelastometry (ROTEM). A pilot observational study. Placenta 2022; 129: 23-29
  • 103 Sokou R, Tritzali M, Piovani D. et al. Comparative performance of four established neonatal disease scoring systems in predicting in-hospital mortality and the potential role of thromboelastometry. Diagnostics (Basel) 2021; 11 (11) 1955
  • 104 Sokou R, Tsantes AG, Konstantinidi A. et al. Rotational thromboelastometry in neonates admitted to a neonatal intensive care unit: a large cross-sectional study. Semin Thromb Hemost 2021; 47 (07) 875-884
  • 105 Tsantes AG, Konstantinidi A, Parastatidou S. et al. Assessment of agreement between EXTEM and NATEM thromboelastometry measurement assays in critically ill neonates. Eur J Haematol 2022; 109 (04) 327-335
  • 106 Sokou R, Piovani D, Konstantinidi A. et al. Prospective temporal validation of the neonatal bleeding risk (NeoBRis) index. Thromb Haemost 2021; 121 (09) 1263-1266