CC BY 4.0 · Organic Materials 2023; 5(02): 139-147
DOI: 10.1055/s-0043-1761310
Organic Thin Films: From Vapor Deposition to Functional Applications
Original Article

Molecular Layer Deposition (MLD) of a Blocked Mercapto Silane on Precipitated Silica

S. Kim
a   Elastomer Technology and Engineering, University of Twente, 7500AE Enschede, The Netherlands
,
b   Department of Chemical Engineering, Delft University of Technology, 2629HZ Delft, The Netherlands
,
D. La Zara
b   Department of Chemical Engineering, Delft University of Technology, 2629HZ Delft, The Netherlands
,
N. Courtois
c   Continental Reifen Deutschland GmbH, 30419 Hannover, Germany
,
J. Davin
c   Continental Reifen Deutschland GmbH, 30419 Hannover, Germany
,
C. Recker
c   Continental Reifen Deutschland GmbH, 30419 Hannover, Germany
,
J. Schoeffel
c   Continental Reifen Deutschland GmbH, 30419 Hannover, Germany
,
a   Elastomer Technology and Engineering, University of Twente, 7500AE Enschede, The Netherlands
,
A. Talma
a   Elastomer Technology and Engineering, University of Twente, 7500AE Enschede, The Netherlands
,
a   Elastomer Technology and Engineering, University of Twente, 7500AE Enschede, The Netherlands
d   Sustainable Elastomer Systems, University of Twente, 7500AE Enschede, The Netherlands
› Author Affiliations


Abstract

Chemically modified silica is widely used as a reinforcing filler in elastomers. The modification is generally done in situ while preparing the rubber. However, in order to increase the efficiency and facilitate the mixing process, the silica can be pre-treated by a 2-step molecular layer deposition. The precursors for the modification are 3-mercaptopropyl-triethoxysilane (MPTES) and octanoyl chloride (OC) to react with MPTES and form a blocked silane. The precipitated silica nanofiller was successfully treated with MPTES and showed a self-limiting behavior: saturation occurred at 2.7%. Furthermore, DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analysis confirmed the successful deposition of MPTES on the silica surface by showing the -SH peak that appeared after the reaction of MPTES and silica. In the second step, OC was introduced to form a thioester on the surface of the MPTES-treated silica, controlling the reactivity of the mercapto group from MPTES by blocking it to prevent a negative influence on the processing behavior of the rubber. Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS) analytical results confirmed the deposition of the blocked mercapto silane on the silica. TGA results demonstrated the self-limiting behavior of OC, and DRIFTS and XPS proved the thioester formation. A thioester peak after the 2nd reaction step with OC appeared. At the same time, the disappearance of the -SH signal from the MPTES was observed, indicating the formation of the blocked mercapto silane structure. Transmission electron microscopy results showed that the treated silica has a well-distributed carbon and sulfur deposition after MPTES/OC treatment.



Publication History

Received: 09 November 2022

Accepted after revision: 30 March 2023

Article published online:
16 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rauline R. US. Patent 5,227,425, 1993
  • 2 Mahtabani A, Alimardani M, Razzaghi-Kashani M. Rubber Chem. Technol. 2017; 90: 508
  • 3 Alimardani M, Razzaghi-Kashani M, Karimi M, Mahtabani A. Rubber Chem. Technol. 2016; 89: 292
  • 4 Sarkawi SS, Dierkes WK, Noordermeer JWM. Rubber Chem. Technol. 2015; 88: 359
  • 5 Bernal-Ortega PM, Anyszka R, Morishita Y, di Ronza R, Blume A. Polymers 2021; 13: 281
  • 6 Pullukat TJ, Hoff RE. Catal. Rev. Sci. Eng. 1999; 41: 389
  • 7 Dorling TA, Eastlake MJ, Moss RL. J. Catal. 1969; 14: 23
  • 8 Yin J, Kim E-S, Yang J, Deng B. J. Membr. Sci. 2012; 238,: 423
  • 9 Akhavan B, Jarvis K, Majewski P. ACS Appl. Mater. Interfaces 2015; 7: 4265
  • 10 Bitar A, Ahmad NM, Fessi H, Elaissari A. Drug Discovery Today 2012; 17: 1147
  • 11 Zhang C, Tang Z, Guo B, Zhang L. Compos. Sci. Technol. 2018; 156: 70
  • 12 Zaborski M, Kosmalska A, Gulinski J. KGK Kautsch. Gummi Kunstst. 2005; 58: 354
  • 13 Ou Y-C, Yu Z-Z, Vidal A, Donnet JB. Rubber Chem. Technol. 1994; 67: 834
  • 14 Ansarifar A, Wang L, Ellis RJ, Kirtley SP. Rubber Chem. Technol. 2006; 79: 39
  • 15 Kapgate BP, Das C, Basu D, Das A, Heinrich G. J. Elastomers Plast. 2015; 47: 248
  • 16 Arpagaus C, Oberbossel G, Rudolf von Rohr P. Plasma Processes Polym. 2018; 15: 1800133
  • 17 He X, Rytöluoto I, Anyszka R, Mahtabani A, Saarimäki E, Lahti K, Paajanen M, Dierkes W, Blume A. Polymers 2019; 11: 1957
  • 18 Nah C, Huh M-Y, Rhee JM, Yoon T-H. Polym. Int. 2002; 51: 510
  • 19 Tiwari M, Noordermeer JWM, Dierkes WK, van Ooij WJ. Rubber Chem. Technol. 2008; 81: 276
  • 20 Dierkes WK, Tiwari M, Datta RN, Talma AG, Noordermeer JWM, van Ooij WJ. Rubber Chem. Technol. 2010; 83: 404
  • 21 Mahtabani A, la Zara D, Anyszka R, He X, Paajanen M, van Ommen JR, Dierkes WK, Blume A. Langmuir 2021; 37: 4481
  • 22 Fiorilli S, Rivolo P, Descrovi E, Ricciardi C, Pasquardini L, Lunelli L, Vanzetti L, Pederzolli C, Onida B, Garrone E. J. Colloid Interface Sci. 2008; 321: 235
  • 23 Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR. Langmuir 2010; 26: 14648
  • 24 Beetstra R, Lafont U, Nijenhuis J, Kelder EM, van Ommen JR. Chem. Vap. Deposition 2009; 15: 227
  • 25 van Ommen JR, Valverde JM, Pfeffer R. J. Nanopart. Res. 2012; 14: 737
  • 26 Van Bui H, Grillo F, van Ommen JR. Chem. Commun. 2014; 53: 45
  • 27 Duchet J, Chabert B, Chapel JP, Gerard JF, Chovelon JM, Jaffrezic-Renault N. Langmuir 1997; 13,: 2271
  • 28 Yoshimura T, Tatsuura S, Sotoyama W. Appl. Phys. Lett. 1991; 59,: 482
  • 29 Sundberg P, Karppinen M. Beilstein J. Nanotechnol. 2014; 5: 1104
  • 30 Wank JR, George SM, Weimer AW. J. Am. Ceram. Soc. 2004; 87: 762
  • 31 Vasudevan SA, Xu Y, Karwal S, van Ostaay HG, Meesters GM, Talebi M, Sudhölter EJ, van Ommen JR. Chem. Commun. 2015; 51: 12540
  • 32 Van Ommen JR, Goulas A. Mater. Today Chem. 2019; 14: 100183
  • 33 Wolff S. Tire Sci. Technol. 1987; 15: 276
  • 34 Sato M. PhD thesis, University of Twente, The Netherlands 2018
  • 35 Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM. KGK Kautsch. Gummi Kunstst. 2016; 69: 44
  • 36 Ko JY, Prakashan K, Kim JK. J. Elastomers Plast. 2012; 44,: 549
  • 37 Blume A, El-Roz M, Thibault-Starzyk F. 11th Rubber Fall Colloquium. Kautschuk Herbst Kolloqium. Hannover, Germany 2014
  • 38 Wu J, Ling L, Xie J, Ma G, Wang B. Chem. Phys. Lett. 2014; 591: 227
  • 39 Seeboth N, Longchambon K, Belin L, Silva CAD. U.S. Patent 8,957,155, 2015
  • 40 Sonntag NO. Chem. Rev. 1953; 52: 237
  • 41 Aped I, Mazuz Y, Sukenik CN. Beilstein J. Nanotechnol. 2012; 3: 213
  • 42 Launer PJ. Silicon Compounds: Register and Review. Anderson R, Arkles BC, Larson GL. Petrarch Systems; Bristrol: 1987: 47
  • 43 Ben Haddada M, Blanchard J, Casale S, Krafft J-M, Vallée A, Méthivier C, Boujday S. Gold Bull. 2013; 46,: 335
  • 44 Ngeow YW, Chapman AV, Heng JY, Williams DR, Mathys S, Hull CD. Rubber Chem. Technol. 2019; 92: 237