CC BY-NC-ND 4.0 · Planta Medica International Open 2018; 5(01): e14-e23
DOI: 10.1055/s-0043-125339
Original Papers
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Antimicrobial Constituents from Leaves of Dolichandrone spathacea and Their Relevance to Traditional Use

Phuc-Dam Nguyen
1   Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Reims, France
,
Amin Abedini
1   Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Reims, France
2   Laboratoire de Microbiologie, EA 4691, UFR de Pharmacie, Reims, France
,
Sophie C. Gangloff
2   Laboratoire de Microbiologie, EA 4691, UFR de Pharmacie, Reims, France
,
Catherine Lavaud
1   Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Reims, France
› Author Affiliations
Further Information

Publication History

received 14 July 2017
revised 14 November 2017

accepted 11 December 2017

Publication Date:
12 February 2018 (online)

Abstract

Five new compounds, three iridoid glycosides (1-3) and two triterpenoid saponins (4, 5), along with thirty-two known compounds were isolated from the methanolic extract of the leaves of Dolichandrone spathacea. This traditional medicinal plant is widely used in Asia and India as antiseptic, for bronchitis and thrush treatment, and the methanolic extract has been shown to possess antibacterial activity against methicillin-resistant Staphylococcus aureus. The new iridoids were esterified derivatives of 6-ajugol and 6-catalpol, and the new saponins were glucosides of two polyhydroxy triterpenes with ursan skeleton. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR experiments and HR-ESI-MS analysis, and from comparison with the literature. This study aimed at investigating extracts and isolated compounds for their antimicrobial activities against bacterial and yeast strains, in order to validate the uses of the plant in folk medicine. The 6-O-esterified iridoids had weaker antibacterial activity; verbascoside and p-methoxycinnamic acid, the major compounds of the methanol extract, possessed strong antibacterial activity, which could account for the traditional antiseptic and anti-infectious uses of the leaves of D. spathacea.

Supporting Information

 
  • References

  • 1 Wiart C. Medicinal plants of the Asia-pacific: drugs for future?. Singapore: World Scientific Publishing; 2006: 565-566
  • 2 Kaewpiboon C, Lirdprapamongkol K, Srisomsap C, Winayanuwattikun P, Yongvanich T, Puwaprisirisan P, Svasti J, Assavalapsakul W. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complement Altern Med 2012; 12: 217-224
  • 3 Prasad PRC. C. Reddy S, Raza SH, Dutt CBS. Folklore medicinal plants of North Andaman Island, India. Fitoterapia 2008; 79: 458-464
  • 4 Jong-Anurakkun N, Bhandari MR, Kawabata J. α-Glucosidase inhibitors from Devil tree (Alstonia scholaris). Food Chem 2007; 103: 1319-1323
  • 5 Saiful AJ, Mastura M, Mazurah MI, Nuziah H. Inhibitory potential against methicillin-resistant Staphylococcus aureus (MRSA) of Dolichandrone spathacea, a mangrove tree species of Malaysia. Lat Am J Pharm 2011; 30: 359-362
  • 6 Nishimura H, Sasaki H, Morota T, Chin M, Mitsuhashi H. Six iridoid glycosides from Rehmannia glutinosa . Phytochemistry 1989; 28: 2705-2709
  • 7 Harinantenaina L, Kasai R, Rakotovao M, Yamasali K. New iridoid and phenethyl glycosides from Malagasy medicinal plant, Phyllarthron madagascariense . J Nat Med 2001; 55: 187-192
  • 8 Junior P. Nemoroside and Nemorososide, zwei neue Iridoidglucoside aus Penstemon nemorosus . Planta Med 1983; 47: 67-70
  • 9 Sarg T, Salama O, El-Domiaty M, Bishr M, Mansour ES, Weight E. Iridoid glucosides from Gentiana kurroo Royle. Alex J Pharm Sci 1991; 5: 82-86
  • 10 El-Naggar SF, Doskotch RW. Specioside: a new iridoid glycoside from Catalpa speciosa . J Nat Prod 1980; 43: 524-526
  • 11 Houghton PJ, Hikino H. Anti-hepatotoxic activity of extracts and constituents of Buddleja species. Planta Med 1989; 55: 123-126
  • 12 Dellar JE, Conn BJ, Cole MD, Waterman PG. Cinnamate esters of catalpol from Westringia fruticosa and Westringia viminalis . Biochem Syst Ecol 1996; 24: 65-69
  • 13 Sticher O, Afifi-Yazar FU. Minecosid und Verminosid, zwei neue Iridoidglucoside aus Veronica officinalis L. (Scrophulariaceae). Helv Chim Acta 1979; 62: 535-539
  • 14 Arslanian RL, Anderson T, Stermitz FR. Iridoid glucosides of Penstemon ambiguus . J Nat Prod 1990; 53: 1485-1489
  • 15 Takeda Y, Nishimura H, Inouye H. Two new iridoid glucosides from Ixora chinensis . Phytochemistry 1975; 14: 2647-2650
  • 16 Abe F, Yamauchi T. Glycosides of 19α-hydroxyoleanane-type triterpenoids from . Trachelospermum asiaticum (Trachelospermum. IV) Chem Pharm Bull 1987; 35: 1833-1838
  • 17 Karasawa H, Kobayashi H, Takizawa N, Miyase T, Fukushima S. Studies on the constituents of Cistanchis Herba. VII: Isolation and structures of Cistanosides H and I. Yakugaku Zasshi 1986; 106: 562-566
  • 18 Andary C, Wylde R, Laffite C, Privat G, Winternitz F. Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae . Phytochemistry 1982; 21: 1123-1127
  • 19 Suo M, Ohta T, Takano F, Jin S. Bioactive phenylpropanoid glycosides from Tabebuia avellanedae . Molecules 2013; 18: 7336-7345
  • 20 Liu QM, Zhao HY, Zhong XK, Jiang JG. Eclipta prostrata L. phytochemicals: Isolation, structure elucidation, and their antitumor activity. Food Chem Toxicol 2012; 50: 4016-4022
  • 21 Orhan F, Barış O, Yanmış D, Bal T, Güvenalp Z, Güllüce M. Isolation of some luteolin derivatives from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potencies. Food Chem 2012; 135: 764-769
  • 22 Özgen U, Mavi A, Terzi Z, Kazaz C, Asçi A, Kaya Y, Seçen H. Relationship between chemical structure and antioxidant activity of luteolin and its glycosides isolated from Thymus sipyleus subsp. sipyleus var. sipyleus . Rec Nat Prod 2011; 5: 12-21
  • 23 Kokotkiewicz A, Luczkiewicz M, Sowinski P, Glod D, Gorynski K, Bucinski A. Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem 2012; 133: 1373-1382
  • 24 Iwagawa T, Asai H, Hase T, Sako S, Su R, Hagiwara N, Kim M. Monoterpenoids from Radermachia sinica . Phytochemistry 1990; 29: 1913-1916
  • 25 Ono T, Koutari S, Marumoto S, Miyazawa M. Novel compound, (2Z,6E)-1-hydroxy-3,7-dimethyl-2,6-octadien-8-oic acid produced from biotransformation of nerol by Spodoptera litura Larvae. J Oleo Science 2013; 62: 313-318
  • 26 Yamaguchi K, Shinohara C, Kojima S, Sodeoka M, Tsuji T. (2E,6 R)-8-Hydroxy-2,6-dimethyl-2-octenoic acid, a novel anti-osteoporotic monoterpene, isolated from Cistanche salsa . Biosci Biotechnol Biochem 1999; 63: 731-735
  • 27 Machida K, Ando M, Yaoita Y, Kakuda R, Kikuchi M. Studies on the constituents of Catalpa species. VI. Monoterpene glycosides from the fallen leaves of Catalpa ovata G. Don. Chem Pharm Bull 2001; 49: 732-736
  • 28 Peungvicha P, Temsiririrkkul R, Prasain JK, Tezuka Y, Kadota S, Thirawarapan SS, Watanabe H. 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 1998; 62: 79-84
  • 29 Sakushima A, Coşkun M, Maoka T. Hydroxybenzoic acids from Boreava orientalis . Phytochemistry 1995; 40: 257-261
  • 30 Silva AMS, Alkorta I, Elguero J, Silva VLM. A 13C NMR study of the structure of four cinnamic acids and their methyl esters. J Mol Struct 2001; 595: 1-6
  • 31 Kelley CJ, Harruff RC, Carmack M. Polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids. J Org Chem 1976; 41: 449-455
  • 32 Çalış I, Kuruüzüm-Uz A, Lorenzetto PA, Rüedi P. (6 S)-Hydroxy-3-oxo-α-ionol glucosides from Capparis spinosa fruits. Phytochemistry 2002; 59: 451-457
  • 33 Yamano Y, Ito M. Synthesis of optically active vomifoliol and roseoside stereoisomers. Chem Pharm Bull 2005; 53: 541-546
  • 34 Couperus PA, Clague ADH, van Dongen JPCM. 13C chemical shifts of some model olefins. Org Magn Reson 1976; 8: 426-431
  • 35 Dinda B, Debnath S, Harigaya Y. Naturally occurring iridoids. A review, Part 1. Chem Pharm Bull 2007; 55: 159-222
  • 36 Acebey-Castellon IL, Voutquenne-Nazabadioko L, Doan TMH, Roseau N, Bouthagane N, Muhammad D, Le Magrex Debar E, Gangloff SC, Litaudon M, Sévenet T, Nguyen VH, Lavaud C. Triterpenoid saponins from Symplocos lancifolia . J Nat Prod 2011; 74: 163-168
  • 37 Aquino R, De Simone F, Vincieri FF, Pizza C, Gacs-Baitz E. New polyhydroxylated triterpenes from Uncaria tomentosa . J Nat Prod 1990; 53: 559-564
  • 38 Ma X, Yang C, Zhang Y. Complete assignments of 1 H and 13C NMR spectral data for three polyhydroxylated 12-ursen-type triterpenoids from Dischidia esquirolii . Magn Reson Chem 2008; 46: 571-575
  • 39 Abedini A, Roumy V, Mahieux S, Biabiany M, Standaert-Vitse A, Rivière C, Sahpaz S, Bailleul F, Neut C, Hennebelle T. Rosmarinic acid and its methyl ester as antimicrobial components of the hydroxymethanolic axtract of Hyptis atrorubens Poit. (Lamiaceae). Evid Based Complement Alternat Med 2013; 2013: 604536
  • 40 Nazemiyeh H, Rahman MM, Gibbons S, Nahar L, Gharamani MA, Talebpour AH, Sarker SD. Assessment of the antibacterial activity of phenylethanoid glycosides from Phlomis lanceolata against multiple-drug-resistant strains of Staphylococcus aureus . J Nat Med 2008; 62: 91-95
  • 41 Joung DK, Lee YS, Han SH, Lee SW, Cha SW, Mun SH, Kong R, Kang OH, Song HJ, Shin DW, Kwon DY. Potentiating activity of luteolin on membrane permeabilizing agent and ATPase inhibitor against methicillin-resistant Staphylococcus aureus . Asian Pac J Trop Med 2016; 9: 19-22
  • 42 Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M. Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum . Phytother Res 2007; 21: 395-397
  • 43 Yuan CS, Zhang Q, Xie W, Yang XP, Jia ZJ. Iridoids from Pedicularis kansuensis forma albiflora . Pharmazie 2003; 58: 428-430