Planta Med 2018; 84(09/10): 704-709
DOI: 10.1055/s-0043-122747
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Prenylated Flavonoids and Phenolic Compounds from the Rhizomes of Marine Phanerogam Cymodocea nodosa

Abla Smadi
1   Université de Batna 1, Faculté des Sciences de la matière, Département de Chimie, Laboratoire de Chimie et Chimie de lʼEnvironnement (LCCE), Batna, Algérie
,
Maria Letizia Ciavatta
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli (Na), Italy
,
Fatma Bitam
3   Université de Batna 2, Faculté de Médecine, Département de Pharmacie, Batna, Algérie
,
Marianna Carbone
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli (Na), Italy
,
Guido Villani
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli (Na), Italy
,
Margherita Gavagnin
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli (Na), Italy
› Author Affiliations
Further Information

Publication History

received 07 August 2017
revised 03 November 2017

accepted 08 November 2017

Publication Date:
23 November 2017 (online)

Abstract

Chemical investigation of the rhizomes of the marine phanerogam Cymodocea nodosa resulted in the isolation of two new prenylated flavon-di-O-glycosides, cymodioside A (1) and B (2), along with known phenolic compounds 37, some of which never reported from seagrasses to date. The structures of compounds 1 and 2 were established by extensive nuclear magnetic resonance analysis. In addition, the absolute configuration of 4-(2,5-dihydroxyhexyl) benzene-1,2-diol (7), which was not previously reported in the literature, has been now determined.

Supporting Information

 
  • References

  • 1 Gillanders BM. Seagrasses, Fish, and Fisheries. In: Larkum AWD, Orth RJ, Duarte CM. eds. Seagrasses: Biology, Ecology, and Conservation. Berlin: Springer; 2006: 503-536
  • 2 Ruiz JM, Boudouresque CF, Enriquez S. Mediterranean seagrasses. Bot Mar 2009; 52: 369-381
  • 3 Repolho T, Duarte B, Dionísio G, Paula JR, Lopes AR, Rosa IC, Grilo TF, Caçador I, Calado R, Rosa R. Seagrass ecophysiological performance under ocean warming and acidification. Sci Rep 2016; 7: e41443
  • 4 Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaquel M. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 2009; 52: 395-418
  • 5 Subhashini P, Dilipan E, Thangaradjou T, Papenbrock J. Bioactive natural products from marine angiosperms: abundance and functions. Nat Prod Bioprospect 2013; 3: 129-136
  • 6 Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function. Phytochemistry 2016; 124: 5-28
  • 7 Mabberley DJ. Mabberleyʼs Plant-Book: a portable Dictionary of Plants, their Classification and Uses. 3rd ed.. ed. Cambridge: Cambridge University Press; 2008
  • 8 Agostini S, Pergent G, Marchand B. Growth and primary production of Cymodocea nodosa in a coastal lagoon. Aquat Bot 2003; 76: 185-193
  • 9 Mateo MA. Beach-cast Cymodocea nodosa along the shore of a semienclosed bay: sampling and elements to assess its ecological implications. J Coastal Res 2010; 26: 283-291
  • 10 Cariello L, Zanetti L, De Stefano S. Phenolic compounds from marine phanerogames, Cymodocea nodosa and Posidonia oceanica . Comp Biochem Physiol 1979; 62 B: 159-161
  • 11 Sica D, Piccialli V, Masullo A. Configuration at C-24 of sterols from the marine phanerogames, Posidonia oceanica and Cymodocea nodosa . Phytochemistry 1984; 23: 2609-2611
  • 12 Kontiza I, Abatis D, Malakate K, Vagias C, Roussis V. 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa . Steroids 2006; 71: 177-181
  • 13 Kolsi RBA, Fakhfakh J, Krichen F, Jribi I, Chiarore A, Patti FP, Blecker C, Allouche N, Belghith H, Belghith K. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide. Carbohydr Polym 2016; 151: 511-522
  • 14 Kontiza I, Vagias C, Jakupovic J, Moreau D, Roussakis C, Roussis V. Cymodienol and cymodiene: new cytotoxic diarylheptanoids from the seagrass Cymodocea nodosa . Tetrahedron Lett 2005; 46: 2845-2847
  • 15 Kontiza I, Stavri M, Zloh M, Vagias C, Gibbons S, Roussis V. New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa . Tetrahedron 2008; 64: 1696-1702
  • 16 Grignon-Dubois M, Rezzonico B. The economical potential of beach-cast seagrass – Cymodocea nodosa: a promising renewable source of chicoric acid. Bot Mar 2013; 56: 303-311
  • 17 Bitam F, Ciavatta ML, Carbone M, Manzo E, Mollo E, Gavagnin M. Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams. Biochem Systematics Ecol 2010; 38: 686-690
  • 18 Bitam F, Ciavatta ML, Villani G, Mollo E, Gavagnin M. The first record of neolignans from the marine phanerogam Posidonia oceanica . Phytochemistry Lett 2012; 5: 696-699
  • 19 Freudenberg K, Karimullah. Steinbrunn G. Umwandlung der Anthocyanidine und Catechine. Liebigs Ann Chem 1935; 518: 37-61
  • 20 Nahrstedt A, Proksch P, Conn EE. Dhurrin, (−)-catechin, flavonol glycosides and flavones from Chamaebatia foliolosa . Phytochemistry 1987; 26: 1546-1547
  • 21 Qi SH, Wu DG, Ma YB, Luo XD. A novel flavane from Carapa guianensis . Acta Bot Sin 2003; 45: 1129-1133
  • 22 Rahman W, Ilyas M. Flavanaides des fleurs d Argemone mexicona . Compt Rend 1961; 252: 1974-1975
  • 23 Senatore F, DʼAgostino M, Dini I. Flavonoids glycosides of Barbarea vulgaris L. (Brassicaceae). J Agric Food Chem 2000; 48: 2659-2662
  • 24 Horhammer L, Wagner H, Arndt HG, Farkas L. Isolierung und Synthese zweier Flavonol-Glycoside von Cereus grandiflorus Mill. Chem Ber 1966; 99: 1384-1387
  • 25 Olszewska MA, Roj JM. Phenolic constituents of the inflorescences of Sorbus torminalis (L.) Crantz. Phytochemistry Lett 2011; 4: 151-157
  • 26 Yu Y, Gao H, Dai Y, Wang Y, Chen HR, Yao XS. Monoterpenoids from the fruit of Gardenia jasminoides . Helv Chim Acta 2010; 93: 763-771
  • 27 Shii T, Asada C, Matsuo Y, Saito Y, Tanaka T. Polyphenols in lahpet-so and two new catechin metabolites produced by anaerobic microbial fermentation of green tea. J Nat Med 2014; 68: 459-464
  • 28 Arisawa M, Horiuchi T, Hayashi T, Tezuka Y, Kikuchi T. Morita N. Studies on constituents of Evodia rutaecarpa (Rutaceae). I. Constituents of the leaves. Chem Pharm Bull 1993; 41: 1472-1474
  • 29 Yoo SW, Kim JS, Kang SS, Son KH, Chang HW, Kim HP, Bae B, Lee C. Constituents of the fruits and leaves of Euodia daniellii . Arch Pharm Res 2002; 25: 824-830
  • 30 Hänsel R, Schulz J. Desmethylxanthohumol: Isolierung aus Hopfen und Cyclisierung zu Flavononen. Arch Pharm (Weinheim) 1988; 321: 37-40
  • 31 Stevens JF, Ivancic M, Hsu VL, Deinzer ML. Prenylflavonoids from Humulus lupulus . Phytochemistry 1997; 44: 1575-1585
  • 32 Stevens JF, Taylor AW, Nickerson GB, Ivancic M, Henning J, Haunold A, Deinzer ML. Prenylflavonoid variation in Humulus lupulus: distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry 2000; 53: 759-775
  • 33 Dewick PM. The shikimate Pathway: aromatic Amino Acids and Phenylpropanoids. In: Medicinal Natural Products: a Biosynthetic Approach. 3rd ed. Chichester: John Wiley & Sons Ltd; 2009: 137-186
  • 34 Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides. Determination of aglycone chirality in flavanone glycosides. Tetrahedron 1970; 26: 4093-4101
  • 35 Caccamese S, Manna L, Scivoli G. Chiral HPLC separation and CD spectra of the C-2 diastereomers of naringin in grapefruit during maturation. Chirality 2003; 15: 661-667
  • 36 Wünsch B, Zott M. Chirale 2-Benzopyran-3-Carbonsäure-Derivate durch Oxa-Pictet-Spengler Reaktion von (S)-3-Phenylmilchsäure-Derivaten. Liebigs Ann Chem 1992; 39-45
  • 37 Larghi EL, Kaufman TS. Synthesis of oxacycles employing the Oxa-Pictet-Spengler reaction: recent developments and new prospects. Eur J Org Chem 2011; 5195-5231
  • 38 Freire F, Seco JM, Quiñoá E, Riguera R. Determining the absolute stereochemistry of secondary/secondary diols by 1H NMR: basis and applications. J Org Chem 2005; 70: 3778-3790
  • 39 Seco JM, Quiñoá E, Riguera R. The assignments of absolute configuration by NMR. Chem Rev 2004; 104: 17-117
  • 40 Seco JM, Quiñoá E, Riguera R. Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents. Chem Rev 2012; 112: 4603-4641
  • 41 Enerstvedt KH, Lundberg A, Sjøtun IK, Fadnes P, Jordheim M. Characterization and seasonal variation of individual flavonoids in Zostera marina and Zostera noltii from Norwegian coastal waters. Biochem Systematics Ecol 2017; 74: 42-50
  • 42 Meng Y, Krzysiak AJ, Durako MJ, Kunzelman JI, Wright JLC. Flavones and flavone glycosides from Halophila johnsonii . Phytochemistry 2008; 69: 2603-2608
  • 43 Hawas UW. A new 8-hydroxy flavone O-xyloside sulfate and antibacterial activity from the Egyptian seagrass Thalassia hemprichii . Chem Nat Comp 2014; 50: 629-632
  • 44 Qi SH, Zhang S, Qian PH, Wang BG. Antifeedant, antibacterial, and antilarval compounds from the South China seagrass Enhalus acoroides . Bot Mar 2008; 51: 441-447