Planta Med 2018; 84(09/10): 558-567
DOI: 10.1055/s-0043-122604
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Biologically Active Orbitides from the Euphorbiaceae Family

Suelem D. Ramalho
1   Institute of Chemistry, São Paulo State University-UNESP, Araraquara-São Paulo, Brazil
,
Meri Emili F. Pinto
1   Institute of Chemistry, São Paulo State University-UNESP, Araraquara-São Paulo, Brazil
,
Douglas Ferreira
2   Federal University of Western Bahia-UFOB, Luís Eduardo Magalhães-Bahia, Brazil
,
Vanderlan S. Bolzani
1   Institute of Chemistry, São Paulo State University-UNESP, Araraquara-São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

received 01 August 2017
revised 26 October 2017

accepted 30 October 2017

Publication Date:
23 November 2017 (online)

Abstract

A comprehensive overview of natural orbitides isolated from Euphorbiaceae species and their most relevant biological activities are presented. Euphorbiaceae is a large and diverse family, which comprises about 300 genera, and is known as an important source of medicines and toxins. Several classes of secondary metabolites have been described for this taxon, however, orbitides have been broadly reported in Jatropha and Croton genera. Additionally, the latex is documented as the main source of orbitides in this family. Based on their structural and functional diversity, orbitides present a large variety of biological activities described as cytotoxicity, antimalarial, antibacterial, antifungal, enzymatic inhibition, and immunosuppressive, although the mechanism of action still needs to be further investigated. In recent years, the discovery of bioactive cyclic peptides from different sources has grown exponentially, making them promising molecules in the search for new drug leads. This review also highlights the attempts made by many researchers to organize the orbitides nomenclature and amino acid numbering, as well the important progress recently achieved in the biosynthetic study area.

Supporting Information

 
  • References

  • 1 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
  • 2 Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415: 389-395
  • 3 Goransson U, Burman R, Gunasekera S, Stromstedt AA, Rosengren KJ. Circular proteins from plants and fungi. J Biol Chem 2012; 287: 27001-27006
  • 4 Maqueda M, Sanchez-Hidalgo M, Fernandez M, Montalban-Lopez M, Valdivia E, Martinez-Bueno M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 2008; 32: 2-22
  • 5 Fusetani N, Matsunaga S. Bioactive sponge peptides. Chem Rev 1993; 93: 1793-1806
  • 6 Craik DJ, Allewell NM. Thematic minireview series on circular proteins. J Biol Chem 2012; 287: 26999-27000
  • 7 Tan NH, Zhou J. Plant cyclopeptides. Chem Rev 2006; 106: 840-895
  • 8 Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830: 3670-3695
  • 9 Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 1999; 294: 1327-1336
  • 10 Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Goransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 2008; 20: 2471-2483
  • 11 Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Goransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci 2015; 6: 1-12
  • 12 Ravipati AS, Poth AG, Troeira Henriques S, Bhandari M, Huang YH, Nino J, Colgrave ML, Craik DJ. Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J Nat Prod 2017; 80: 1522-1530
  • 13 Sabandar CW, Ahmat N, Jaafar FM, Sahidin I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 2013; 85: 7-29
  • 14 Birk Y, Gertler A, Khalef S. A pure trypsin inhibitor from soya beans. Biochem J 1963; 87: 281-284
  • 15 Henriques ST, Craik DJ. Cyclotides as templates in drug design. Drug Discov Today 2010; 15: 57-64
  • 16 Mahatmanto T. Review seed biopharmaceutical cyclic peptides: From discovery to applications. Biopolymers 2015; 104: 804-814
  • 17 Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30: 108-160
  • 18 Picchi DG, Altei WF, Saito MS, Bolzani VS, Cilli EM. Peptídeos cíclcicos de biomassa vegetal: características, diversidade, biossíntese e atividade biológicas. Quim Nova 2009; 32: 1262-1277
  • 19 Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013; 81: 136-147
  • 20 Craik DJ, Shim YY, Goransson U, Moss GP, Tan N, Jadhav PD, Shen J, Reaney MJ. Nomenclature of homodetic cyclic peptides produced from ribosomal precursors: An IUPAC task group interim report. Biopolymers 2016; 106: 917-924
  • 21 Shim YY, Young LW, Arnison PG, Gilding E, Reaney MJ. Proposed systematic nomenclature for orbitides. J Nat Prod 2015; 78: 645-652
  • 22 Catalan CAN, Heluani CS, Kotowicz C, Gedris TE, Herz W. A linear sesterterpene, two squalene derivatives and two peptide derivatives from Croton hieronymi . Phytochemistry 2003; 64: 625-629
  • 23 Salatino A, Salatino MLF, Negri G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J Braz Chem Soc 2007; 18: 11-33
  • 24 Seigler DS. Phytochemistry and systematics of Euphorbiaceae. Ann Mo Bot Gard 1994; 81: 380-401
  • 25 Pinto ME, Batista JMJ, Koehbach J, Gaur P, Sharma A, Nakabashi M, Cilli EM, Giesel GM, Verli H, Gruber CW, Blanch EW, Tavares JF, da Silva MS, Garcia CR, Bolzani VS. Ribifolin, an orbitide from Jatropha ribifolia, and its potential antimalarial activity. J Nat Prod 2015; 78: 374-380
  • 26 Auvin-Guette C, Baraguey C, Blond A, Xavier HS, Pousset JL, Bodo B. Pohlianins A, B and C, cyclic peptides from the latex of Jatropha pohliana ssp. molissima . Tetrahedron 1999; 55: 11495-11510
  • 27 Van den Berg AJJ, Horsten SFAJ, Van den Bosch JJK, Beukelman CJ, Kroes BH, Leeflang BR, Labadie RP. Podacycline A and B, two cyclic peptides in the latex of Jatropha podagrica . Phytochemistry 1996; 42: 129-133
  • 28 Altei WF, Picchi DG, Abissi BM, Giesel GM, Flausino OJ, Reboud-Ravaux M, Verli H, Crusca EJ, Silveira ER, Cilli EM, Bolzani VS. Jatrophidin I, a cyclic peptide from Brazilian Jatropha curcas L.: isolation, characterization, conformational studies and biological activity. Phytochemistry 2014; 107: 91-96
  • 29 Van den Berg AJJ, Horsten SFAJ, Van den Bosch JJK, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP. Curcacycline A – a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 1995; 358: 215-218
  • 30 Auvin C, Baraguey C, Blond A, Lezenven F, Pousset JL, Bodo B. Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 1997; 38: 2845-2848
  • 31 Auvin-Guette C, Baraguey C, Blond A, Pousset JL, Bodo B. Cyclogossine B, a cyclic octapeptide from Jatropha gossypifolia . J Nat Prod 1997; 60: 1155-1157
  • 32 Kosasi S, Van der Sluis WG, Boelens R, Hart LA, Labadie RP. Labaditin, a novel cyclic decapeptide from the latex of Jatropha multifida L. (Euphorbiaceae). FEBS Lett 1989; 256: 91-96
  • 33 Baraguey C, Blond A, Cavelier F, Pousset JL, Bodo B, Auvin-Guette C. Isolation, structure and synthesis of mahafacyclin B, a cyclic heptapeptide from the latex of Jatropha mahafalensis . J Chem Soc 2001; 2098-2103
  • 34 Baraguey C, Auvin-Guette C, Blond A, Cavelier F, Lezenven F, Pousset JL, Bodo B. Isolation, structure and synthesis of chevalierins A, B and C, cyclic peptides from the latex of Jatropha chevalieri . J Chem Soc 1998; 3033-3039
  • 35 Mehmood R, Malik A. Isolation and characterization of crotosparsamide, a new cyclic nonapeptide from Croton sparsiflorus . Nat Prod Commun 2010; 5: 1885-1888
  • 36 Candido-Bacani PM, Figueiredo PO, Matos MF, Garcez FR, Garcez WS. Cytotoxic orbitide from the latex of Croton urucurana . J Nat Prod 2015; 78: 2754-2760
  • 37 Quintyne-Walcott S, Maxwell AR, Reynolds WF. Crotogossamide, a cyclic nonapeptide from the latex of Croton gossypifolius . J Nat Prod 2007; 70: 1374-1376
  • 38 Poth AG, Chan LY, Craik DJ. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 2013; 100: 480-491
  • 39 Craik DJ, Swedberg JE, Mylne JS, Cemazar M. Cyclotides as a basis for drug design. Expert Opin Drug Discov 2012; 7: 179-194
  • 40 Silva SI, Oliveira AFM, Negri G, Salatino A. Seed oils of Euphorbiaceae from the Caatinga, a Brazilian tropical dry forest. Biomass Bioenerg 2014; 69: 124-134
  • 41 Secco RS, Cordeiro I, Senna-Vale L, Sales MF, Lima LR, Medeiros D, Haiad BS, Oliveira AS, Caruzo MBR, Carneiro-Torres D, Bigio NC. An overview of recent taxonomic studies on Euphorbiaceae s.l. in Brazil. Rodriguesia 2012; 63: 227-242
  • 42 Mwine JT, Van Damme P. Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features. J Med Plant Res 2011; 5: 652-662
  • 43 Devappa RK, Makkar HP, Becker K. Jatropha toxicity – a review. J Toxicol Environ Health B Crit Rev 2010; 13: 476-507
  • 44 The Plant List. Version 1.1. 2013. Available at. http://www.theplantlist.org/1.1/cite/ Accessed April 22, 2017
  • 45 Williamson EM, Hooper M. Ayurvedic Medicine. In: Williamson EM. ed. Major Herbs of Ayurveda. Edinburgh: Churchill Livingstone; 2002: 321-325
  • 46 Lai XZ, Yang YB, Shan XL. The investigation of Euphorbiaceous medicinal plants in southern China. Econ Bot 2004; 58: 307-320
  • 47 Abdelgadir HA, Van Staden J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S Afr J Bot 2013; 88: 204-218
  • 48 Rizk AFM. The chemical constituents and economic plants of the Euphorbiaceae. Bot J Linn Soc 1986; 94: 293-326
  • 49 Refahy LAG. Study on flavonoids and triterpenoids content of some Euphorbiaceae plants. J Life Sci 2011; 5: 100-107
  • 50 Abdulladzhanova NG, Mavlyanov SM, Dalimov DN. Polyphenols of certain plants of the Euphorbiaceae family. Chem Nat Compd 2003; 39: 399-400
  • 51 Pomilio AB, Battista ME, Vitale AA. Naturally-occurring cyclopeptides: structures and bioactivity. Curr Org Chem 2006; 10: 2075-2121
  • 52 Ortega MA, Van der Donk WA. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem Biol 2016; 23: 31-44
  • 53 Conibear AC, Craik DJ. The chemistry and biology of theta defensins. Angew Chem Int Ed Engl 2014; 53: 10612-10623
  • 54 Barber CJ, Pujara PT, Reed DW, Chiwocha S, Zhang H, Covello PS. The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae involves cyclization by a serine protease-like enzyme. J Biol Chem 2013; 288: 12500-12510
  • 55 Yang X, Van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chem Eur J 2013; 19: 7662-7677
  • 56 Chekan JR, Estrada P, Covello PS, Nair SK. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. Proc Natl Acad Sci U S A 2017; 114: 6551-6556
  • 57 Condie JA, Nowak G, Reed DW, Balsevich JJ, Reaney MJ, Arnison PG, Covello PS. The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J 2011; 67: 682-690
  • 58 Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 2011; 18: 65-76
  • 59 Ngadjui BT, Abegaz BM, Keumedjio F, Folefoc GN, Kapche GWF. Diterpenoids from the stem bark of Croton zambesicus . Phytochemistry 2002; 60: 345-349
  • 60 Ngadjui BT, Folefoc GG, Keumedjio F, Dongo E, Sondengam BL, Connolly JD. Crotonadiol, a labdane diterpenoid from the stem bark of Croton zambesicus . Phytochemistry 1999; 51: 171-174
  • 61 Block S, Baccelli C, Tinant B, Van Meervelt L, Rozenberg R, Jiwan JLH, Llabres G, Pauw-Gillet MC, Quetin-Leclercq J. Diterpenes from the leaves of Croton zambesicus . Phytochemistry 2004; 65: 1165-1171
  • 62 Vigor C, Fabre N, Fouraste I, Moulis C. Three clerodane diterpenoids from Croton eluteria Bennett. Phytochemistry 2001; 57: 1209-1212
  • 63 Gurgel LA, Sidrim JJ, Martins DT, Cechinel Filho V, Rao VS. In vitro antifungal activity of dragonʼs blood from Croton urucurana against dermatophytes. J Ethnopharmacol 2005; 97: 409-412
  • 64 Gupta D, Bleakley B, Gupta RK. Dragonʼs blood: botany, chemistry and therapeutic uses. J Ethnopharmacol 2008; 115: 361-380
  • 65 Sandoval M, Okuhama NN, Clark M, Angeles FM, Lao J, Bustamante S, Miller MJS. Sangre de grado Croton palanostigma induces apaptosis in human gatrointestinal cancer cells. J Ethnopharmacol 2002; 80: 121-129
  • 66 Rossi D, Bruni R, Bianchi N, Chiarabelli C, Gambari R, Medici A, Lista A, Paganetto G. Evaluation of the mutagenic, antimutagenic and antiproliferative potential of Croton lechleri (Muell. Arg.) latex. Phytomedicine 2003; 10: 139-144
  • 67 Froldi G, Zagotto G, Filippini R, Montopoli M, Dorigo P, Caparrotta L. Activity of sap from Croton lechleri on rat vascular and gastric smooth muscles. Phytomedicine 2009; 16: 768-775
  • 68 Lopes MI, Saffi J, Echeverrigaray S, Henriques JA, Salvador M. Mutagenic and antioxidant activities of Croton lechleri sap in biological systems. J Ethnopharmacol 2004; 95: 437-445
  • 69 Alonso-Castro AJ, Ortiz-Sanchez E, Dominguez F, Lopez-Toledo G, Chavez M, Ortiz-Tello Ade J, Garcia-Carranca A. Antitumor effect of Croton lechleri Mull. Arg. (Euphorbiaceae). J Ethnopharmacol 2012; 140: 438-442
  • 70 Prasad DMR, Izam A, Khan MMR. Jatropha curcas: plant of medicinal benefits. J Med Plant Res 2012; 6: 2691-2699
  • 71 Sharma SK, Singh H. A review on pharmacological significance of genus Jatropha (Euphorbiaceae). Chin J Integr Med 2012; 18: 868-880
  • 72 Zhang XP, Zhang ML, Su XH, Huo CH, Gu YC, Shi QW. Chemical constituents of the plants from the genus Jatropha . Chem Biodivers 2009; 6: 2166-2183
  • 73 Oliveira JS, Leite PM, Souza LB, Mello VM, Silva EC, Rubim JC, Meneghetti SMP, Suarez PAZ. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenerg 2009; 33: 449-453
  • 74 Nath LK, Dutta SK. Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol 1991; 43: 111-114
  • 75 Insanu M, Dimaki C, Wilkins R, Brooker J, Van der Linde P, Kayser O. Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. Phytochem Rev 2013; 12: 107-119
  • 76 Insanu M, Anggadiredja J, Oliver K. Curcacycline A and B – new pharmacological insights to an old drug. Int J Appl Res Nat Prod 2012; 5: 26-34
  • 77 Horsten SFAJ, Van den Berg AJJ, Van den Bosch JJK, Leeflang BR, Labadie RP. Cyclogossine A: a novel cyclic heptapeptide isolated from the latex of Jatropha gossypifolia . Planta Med 1996; 62: 46-50
  • 78 Labadie RP. Immunomodulatory Compounds. In: Colgate SM, Molyneux RJ. eds. Bioactive natural Products: Detection, Isolation and structural Determination. Boca Raton: CRC Press; 1993: 279-317
  • 79 Baraguey C, Blond A, Correia I, Pousset JL, Bodo B, Auvin-Guette C. Mahafacyclin A, a cyclic heptapeptide from Jatropha mahafalensis exhibiting β-bulge conformation. Tetrahedron Lett 2000; 41: 325-329
  • 80 Mongkolvisut W, Sutthivaiyakit S, Leutbecher H, Mika S, Klaiber I, Moller W, Rosner H, Beifuss U, Conrad J. Integerrimides A and B, cyclic heptapeptides from the latex of Jatropha integerrima . J Nat Prod 2006; 69: 1435-1441
  • 81 Jucá TL, Monteiro-Moreira ACO, Moreira RA, Araújo CV, Lopes JLS, Moreno FBMB, Ramos MV. A new peptide from Jatropha curcas seeds: Unusual sequence and insights into its synthetic analogue that enhances proteolytic activity of papain. Process Biochem 2015; 50: 1434-1440
  • 82 Boldbaatar D, Gunasekera S, El-Seedi HR, Goransson U. Synthesis, structural characterization, and bioactivity of the stable peptide RCB-1 from Ricinus communis . J Nat Prod 2015; 78: 2545-2551
  • 83 Ovenden SPB, Fredriksson SA, Bagas CK, Bergstrom T, Thomson SA, Nilsson C, Bourne DJ. De novo sequencing of RCB-1 to -3: peptide biomarkers from the castor bean plant Ricinus communis . Anal Chem 2009; 81: 3986-3996
  • 84 Uemura D, Sugiura K, Hirata Y. O-acetyl-N-(N′-benzoyl-L-phenilalanyl)-L-Phenylalaninol. Isolation from Euphorbia fischeriana Steudel. Chem Lett 1975; 1: 537-538
  • 85 Thell K, Hellinger R, Schabbauer G, Gruber CW. Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 2014; 19: 645-653
  • 86 Barbosa SC, Cilli EM, Dias LG, Stabeli RG, Ciancaglini P. Labaditin, a cyclic peptide with rich biotechnological potential: preliminary toxicological studies and structural changes in water and lipid membrane environment. Amino Acids 2011; 40: 135-144
  • 87 Barbosa SC, Nobre TM, Volpati D, Ciancaglini P, Cilli EM, Lorenzón NE, Oliveira jr. ON. The importance of cyclic structure for labaditin on its antimicrobial activity against Staphylococcus aureus . Coll Surf B 2016; 148: 453-459
  • 88 Matsubara Y, Yusa T, Sawabe A, Lizuka Y, Takekuma S, Yoshida Y. Structures of new cyclic peptides in young unshiu (Citrus unshiu MARCOV.), orange (Citrus sinenis Osbeck.) and Amanatsu (Citrus natsudaidai) peelings. Agric Biol Chem 1991; 55: 2923-2929
  • 89 Matsumoto T, Nishimura K, Takeya K. New cyclic peptides from Citrus medica var. sarcodactylis SWINGLE. Chem Pharm Bull 2002; 50: 857-860
  • 90 Noh HJ, Hwang D, Lee ES, Hyun JW, Yi PH, Kim GS, Lee SE, Pang C, Park YJ, Chung KH, Kim GD, Kim KH. Anti-inflammatory activity of a new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu . J Ethnopharmacol 2015; 163: 106-112
  • 91 Morita H, Enomoto M, Hirasawa Y, Iizuka T, Ogawa K, Kawahara N, Goda Y, Matsumoto T, Takeya K. Cyclonatsudamine A, a new vasodilator cyclic peptide from Citrus natsudaidai . Bioorg Med Chem Lett 2007; 17: 5410-5413
  • 92 Ribeiro TAN, Silva LR, Junior PTS, Castro RN, Carvalho MG. A new cyclopeptide and other constituents from the leaves of Zanthoxylum rigidum Humb. & Bonpl. ex Willd. (Rutaceae). Helv Chim Acta 2012; 95: 935-939
  • 93 Beirigo PJS, Torquato HF, Santos CH, Carvalho MG, Castro RN, Paredes-Gamero EJ, Sousa PTJ, Jacinto MJ, Silva VC. [1–8-NalphaC]-Zanriorb A1, a proapoptotic orbitide from leaves of Zanthoxylum riedelianum . J Nat Prod 2016; 79: 1454-1458
  • 94 Eggleston DS, Baures PW, Peishoff CE, Kopple KD. Conformations of cyclic heptapeptides: crystal structure and computational studies of evolidine. J Am Chem Soc 1991; 113: 4410-4416
  • 95 Wang YS, He HP, Yang JH, Shen YM, Zhou J, Hao XJ. A new cyclopeptide from Clausena anisum-olens . Helv Chim Acta 2005; 88: 2345-2348
  • 96 Wang YS, He HP, Yang JH, Di YT, Tan NH, Hao XJ. Clausenain B, a phenylalanine-rich cyclic octapeptide from Clausena anisum-olens . J Braz Chem Soc 2009; 20: 478-481
  • 97 Kaufmann HP, Tobschirbel A. Über ein Oligopeptid aus Leinsamen. Chem Ber 1959; 92: 2805-2810
  • 98 Matsumoto T, Shishido A, Morita H, Itokawa H, Takeya K. Cyclolinopeptides F–I, cyclic peptides from linseed. Phytochemistry 2001; 57: 251-260
  • 99 Morita H, Shishido A, Matsumoto T, Itokawa H, Takeya K. Cyclolinopeptides B–E, new cyclic peptides from Linum usitatissimum . Tetrahedron 1999; 55: 967-976
  • 100 Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci Technol 2014; 38: 5-20
  • 101 Chao-Ming L, Ning-Hua T, Qing M, Hui-Lan Z, Xiao-Jiang H, Yu W, Jun Z. Cyclopeptide from the seeds of Annona squamosa . Phytochemistry 1997; 45: 521-523
  • 102 Wélé A, Zhang Y, Ndoye I, Brouard JP, Pousset JL, Bodo B. A cytotoxic cyclic heptapeptide from the seeds of Annona cherimola . J Nat Prod 2004; 67: 1577-1579
  • 103 Wélé A, Zhang Y, Dubost L, Pousset JL, Bodo B. Cyclic peptides from the seeds of Annona glauca and A. cherimola . Chem Pharm Bull 2006; 54: 690-692
  • 104 Ding Z, Zhou J, Tan N, Teng R. Two new cyclic peptides from Drymaria diandra . Planta Med 2000; 66: 386-388
  • 105 Hsieh PW, Chang FR, Wu CC, Wu KY, Li CM, Chen SL, Wu YC. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus . J Nat Prod 2004; 67: 1522-1527
  • 106 Morita H, Kayashita T, Koichi T, Hideji I. Cyclic peptides from higher plants, part 15. Pseudostellarin H, a new cyclic octapeptide from Pseudostellaria heterophylla . J Nat Prod 1995; 58: 943-947
  • 107 Morita H, Kayashita T, Kobata H, Gonda A, Takeya K, Itokawa H. Pseudostellarins A–C, new tyrosine inhibitory cyclic peptides from Pseudostellaria heterophylla . Tetrahedron 1994; 50: 6797-6804
  • 108 Morita H, Kayashita T, Kobata H, Gonda A, Takeya K, Itokawa H. Pseudostellarins D–F, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla . Tetrahedron 1994; 50: 9975-9982
  • 109 Morita H, Shishido A, Kayashita T, Koichi T, Itokawa H. Cyclic peptides from higher plants. 39. Dichotomins F and G, cyclic peptides from Stellaria dichotoma var. lanceolata . J Nat Prod 1997; 60: 404-407
  • 110 Morita H, Kayashita T, Shimomura M, Takeya K, Itokawa H. Cyclic peptides from higher plants. 24. Yunnanin C, a novel cyclic heptapeptide from Stellaria yunnanensis . J Nat Prod 1996; 59: 280-282
  • 111 Morita H, Shishido A, Kayashita T, Shimomura M, Takeya K, Itokawa H. Two novel cyclic peptides, Yunnanins A and B from Stellaria yunnanenis . Chem Lett 1994; 1: 2415-2418
  • 112 Yun YS, Morita H, Takeya K, Itokawa H. Cyclic peptides from higher plants. 34. Segetalins G and H, structures and estrogen-like activity of cyclic pentapeptides from Vaccaria segetalis . J Nat Prod 1997; 60: 216-218
  • 113 Kaas Q, Craik DJ. NMR of plant proteins. Prog Nucl Magn Reson Spectrosc 2013; 71: 1-34
  • 114 Machado A, Liria CW, Proti PB, Remuzgo C, Miranda MTM. Chemical and enzymatic peptide synthesis: basic aspects and applications. Quim Nova 2004; 27: 781-789
  • 115 Wuthrich K. NMR Spectra of Proteins and nucleic Acids in Solution. In: Wuthrich K. ed. NMR of Proteins and nucleic Acids. New York: Wiley; 1986: 27-39
  • 116 Bax A. Two-dimensional NMR and protein structures. Annu Rev Biochem 1989; 58: 223-256
  • 117 Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol 2008; 12: 483-490
  • 118 White AM, Craik DJ. Discovery and optimization of peptide macrocycles. Expert Opin Drug Discov 2016; 11: 1151-1163
  • 119 Cheneval O, Schroeder CI, Durek T, Walsh P, Huang YH, Liras S, Price DA, Craik DJ. Fmoc-based synthesis of disulfide-rich cyclic peptides. J Org Chem 2014; 79: 5538-5544
  • 120 Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85: 2149-2154
  • 121 Merrifield RB. Solid-phase peptide synthesis. III. An improved synthesis of bradykinin. Biochemistry 1964; 3: 1385-1390