Aktuelle Dermatologie 2018; 44(05): 216-225
DOI: 10.1055/s-0043-122327
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Photobiologische Wirkungen der Sonnenstrahlung auf die Haut und Schutz durch Sonnenschutzmittel

Photobiological Effects of Solar Radiation on Skin and Protection when Using Sunscreens
D. Kockott
1   Dr. Dieter Kockott UV-Technik, Hanau
,
B. Herzog
2   BASF Grenzach GmbH, Grenzach-Wyhlen
› Author Affiliations
Further Information

Publication History

Publication Date:
09 May 2018 (online)

Zusammenfassung

Die Wellenlängenabhängigkeit photobiologischer Wirkungen wird durch Wirkungsspektren beschrieben. Die physikalischen Voraussetzungen für die Ermittlung und Anwendung von Wirkungsspektren werden erläutert. Die Bewertung von Strahlungsquellen durch Wirkungsspektren wird am Beispiel der Erythembildung und der Bildung von Provitamin D gezeigt.

Die Schutzwirkung von Sonnenschutzmitteln in verschiedenen Spektralbereichen kann durch die Wahl geeigneter UV-Absorber variiert werden. Die Bestimmung von Schutzfaktoren gegenüber erythemwirksamer Strahlung und UVA-Strahlung wird beschrieben. Sonnenschutzmittel reduzieren automatisch auch diejenigen Strahlungsanteile, die für die Produktion von Provitamin D verantwortlich sind. Es wird eine Optimierung von Sonnenschutzmitteln beschrieben, die bei vorgegebenem Erythemschutz ein Optimum an Provitamin D-erzeugender Strahlung auf der Haut zulassen.

Abstract

The wavelength dependance of photobiological effects can be expressed by action spectra. It is explained in physical terms how action spectra are measured and applied. The assessment of radiation sources via action spectra is shown with the example of both erythema formation and the production of previtamin D.

The protective effect of sunscreens in different spectral ranges can be varied by choosing suitable UV absorbers. Determination of protection factors related to both erythema effective radiation and UVA related effects is described.

Sunscreens do also reduce the part of the radiation responsible for the production of previtamin D. Finally, it is pointed out how sunscreens can be optimized to allow a maximum of previtamin D producing radiation reaching the skin, while keeping the sun protection factor constant.

 
  • Literatur

  • 1 ISO/TR 17801: 2014. Standard table for reference global solar spectral irradiance at sea level – horizontal, relative air mass 1.
  • 2 DIN 5031-10: 2013 Strahlungsphysik im optischen Bereich und Lichttechnik – Teil 10: Photobiologisch wirksame Strahlung, Größen, Kurzzeichen und Wirkungsspektren.
  • 3 De Gruijl FR, Sterenborg HJCM, Forbes PD. et al. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 1993; 53: 53-60
  • 4 CIE 138/2-2000. Action Spectrum for Photocarcinogenesis (Non-Melanoma Skin Cancers).
  • 5 De Gruijl FR, Henk JN. UV radiation, mutations and oncogenic pathways in skin cancer. Comprehensive Series in Photosciences 2001; 3: 287-302
  • 6 Courdavault S, Baudouin C, Charveron M. et al. Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells. Mutation Res 2004; 556: 135-142
  • 7 Tewari A, Sarkany RP, Young AR. UVA1 induces cyclobutane pyrimidine dimers but not 6-​4 photoproducts in human skin in vivo. J Invest Dermatol 2012; 132: 394-400
  • 8 Zastrow L, Groth N, Klein F. et al. The missing link – light-induced (280 – 1600 nm) free radical formation in human skin. Skin Pharm Physiol 2009; 22: 31-44
  • 9 Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol 1981; 77: 13-19
  • 10 Osterwalder U, Sohn M, Herzog B. Global state of sunscreens. Photoderm Photoimmun Photomed 2014; 30: 62-80
  • 11 Herzog B. Photoprotection of human skin. Photochemistry 2012; 40: 245-273
  • 12 Herzog B, Katzenstein A, Quass K. et al. Physical Properties of Organic Particulate UV-Absorbers Used in Sunscreens: I. Determination of Particle Size with Fibre-Optic Quasi-Elastic Light Scattering (FOQELS), Disc Centrifugation, and Laser Diffractometry. J Colloid Interface Sci 2004; 144: 136-144
  • 13 Herzog B, Quass K, Schmidt E. et al. Physical Properties of Organic Particulate UV-Absorbers Used in Sunscreens: II. UV-Attenuating Efficiency as Function of Particle Size. J Colloid Interface Sci 2004; 276: 354-363
  • 14 Cole C, Shyr T, Ou-Yang H. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering. Photoderm Photoimmun Photomed 2016; 32: 5-10
  • 15 ISO 24442: 2010. Cosmetics – Sun protection test methods – In vivo determination of the sun protection factor (SPF).
  • 16 Diffey BL, Robson J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J Soc Cosmet Chem 1989; 40: 127-133
  • 17 Reece BT, Deeds D, Rozen M. An in vitro method for screening sunscreen formulations for sun protection factor using a full-thickness skin model. J Soc Cosmet Chem 1992; 43: 307-312
  • 18 Tronnier H, Kockott D, Meick B. et al. Zur in vitro-Bestimmung des SPF. Parfüm Kosmet 1996; 77: 326-329
  • 19 Miksa S, Lutz D, Guy C. New approach for a reliable in vitro sunprotection factor method – Part 1: Principle and mathematical aspects. Int J Cosmetic Sci 2015; 37: 555-566
  • 20 Miura Y, Hirao T, Hatao M. Influence of application amount on sunscreen photodegradation in in vitro sun protection factor evaluation: proposal of a skin-mimicking substrate. Photochemistry and Photobiology 2012; 88: 475-482
  • 21 Sayre RM, Agin PP, LeVee GJ. et al. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 1979; 29: 559-566
  • 22 Rohr M, Klette E, Ruppert S. et al. In vitro Sun Protection Factor: Still a Challenge with No Final Answer. Skin Pharmacol Physiol 2010; 23: 201-212
  • 23 Chardon A, Moyal D, Hourseau C. Persistent pigment-darkening response as a method for evaluation of Ultraviolet A protection assays. In: Lowe NJ, Shaath NA, Pathak MA. ed. Sunscreens: Development, Evaluation, and Regulatory Aspects. New York: Marcel Dekker; 1979: 559-582
  • 24 Gers-Barlag H. Harmonised in vitro determination of UVA protection. London: Proc Int. Sun Protection Conference; 2005
  • 25 ISO 24443: 2012. Determination of sunscreen UVA photoprotection in vitro.
  • 26 Diffey BL. A method for broad spectrum classification of sunscreens. Int J Cosmet Sci 1994; 16: 47-52
  • 27 Anonymous. BASF sunscreen simmulator. BASF SE, Ludwigshafen, Germany. Available at: http://www.basf.com/sunscreen-simulator
  • 28 Herzog B, Osterwalder U. Simualtion of sunscreen performance. Pure Appl Chem 2015; 87: 937-951
  • 29 Bimczok R, Gers-Barlag H, Mundt C. et al. Influence of applied quantity of sunscreen products on the sun protection factor – a multicentre study organized by the DGK taskforce sun protection. Skin Pharmacol Physiol 2007; 20: 57-64
  • 30 Ou-Yang H, Stanfield J, Cole C. et al. High SPF sunscreens (SPF ≥ 70) may provide ultraviolet protection above minimal recommended levels by adequately compensating for lower sunscreen application amounts. J Am Acad Dermatol 2012; 67: 1220-1227
  • 31 Farschou A, Wulff HC. The relation between sun protection factor and amount of sunscreen applied in vivo. Brit J Dermatol 2007; 156: 716-719
  • 32 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266-281
  • 33 Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol 2013; 5: 51-108
  • 34 Kockott D, Herzog B, Reichrath J. et al. New approach to develop optimized sunscreens that enable cutaneous vitamin D formation with minimal erythema risk. PLoS One 2016; 11: e0145509/1-e0145509/10