Planta Medica International Open 2017; 4(03): e93-e103
DOI: 10.1055/s-0043-121151
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Identification of Bioactive Compounds in Polar and Nonpolar Extracts of Araujia sericifera

Martina Palomino-Schätzlein
1   Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
,
Mary Cecilia Montaño
2   Centro Ecología Química Agrícola, Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
,
Pablo V. Escrig
3   Instituto de Tecnología Química (UPV-CSIC), Valencia, Spain
,
Herminio Boira
4   Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
,
Avelino Corma
3   Instituto de Tecnología Química (UPV-CSIC), Valencia, Spain
,
Antonio Pineda-Lucena
1   Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
,
Jaime Primo
2   Centro Ecología Química Agrícola, Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
,
Nuria Cabedo
2   Centro Ecología Química Agrícola, Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 06. April 2017
revised 07. Juni 2017

accepted 25. September 2017

Publikationsdatum:
09. November 2017 (online)

Abstract

Araujia sericifera is a native perennial, climbing laticiferous shrub from South America that is currently naturalized in many other countries. Previous data describe promising properties for A. sericifera, but no systematic study of its bioactive compounds and possible medicinal applications has been conducted to date. In the present study, aerial parts of A. sericifera (leaves, stems, and fruits) were explored by combining GC-MS and NMR spectroscopy analysis for both nonpolar (hexane) and polar (methanol) extracts. The hexanic extracts contained high amounts of pentacyclic triterpenes including two new metabolites, 3-tigloyl germanicol (18) and 3-tigloyl lupeol (19). The methanolic extracts revealed the presence of luteolin-7-glucoside (24), trigonelline (22), and conduritol F (23) as the main constituents. A multivariate study of a meaningful number of extracts allowed us to determine the distribution of compounds inside the plant. A cytotoxic evaluation in vitro showed that both leaf and fruit hexanic extracts presented a moderate activity against human breast carcinoma cell lines (MDA-MB-453 and MCF-7) and human colon carcinoma cell line (HCT-116) by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay.

Supporting Information

 
  • References

  • 1 Spellman DL, Gunn CR. Morrenia odorata and Araujia sericofera (Asclepiadaceae): weeds in citrus groves. Castanea 1976; 41: 139-148
  • 2 Forster PI, Bruyns PV. Clarification of synonomy for the common moth-vine Araujia sericifera (Asclepiadaceae). Taxon 1992; 41: 746-749
  • 3 Federici E, Galeffi C, Nicoletti M. Constituents of Araujia sericofera . J Nat Prod 1988; 51: 189-190
  • 4 López de Medrano-Villar MJ, Bello R, Esplugues J. et al. Triterpenoid compounds from Araujia sericofera B. Effects on the isolated guinea pig ileum. Methods Find Exp Clin Pharmacol 1997; 19: 515-520
  • 5 Bello R, Barrachina MD, Esplugues J. et al. Analgesic activity and effects on isolated smooth muscle of different fractions of hexane extract from Araujia sericofera Brot. Phytother Res 1996; 10: 337-339
  • 6 Matsuda F, Yonekura-Sakakibara K, Niida R. et al. MS/MS spectral data tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 2009; 57: 555-577
  • 7 Frederich M, Choi YH, Angenot L. et al. Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochem 2004; 65: 1993-2001
  • 8 Barding GA, Béni S, Fukao T. et al. Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. J Proteome Res 2013; 12: 898-909
  • 9 Sholichin M, Yamasaki K, Kasai R. et al. 13C Nuclear magnetic resonance of lupane-type triterpenes, lupeol, botulin and betulinic acid. Chem Pharm Bull 1980; 28: 1006-1008
  • 10 Palomino-Schätzlein M, Escrig PV, Boira H. et al. Evaluation of nonpolar metabolites in plant extracts by 13C NMR spectroscopy. J Agric Food Chem 2011; 59: 11407-11416
  • 11 Ebajo Jr. VD, Shen CC, Ragasa CY. Terpenoids and Sterols from Hoya multiflora Blume. J Appl Pharm Sci 2015; 5: 33-39
  • 12 Dat NT, Cai XF, Bae K. et al. Terpenoid constituents from Youngia koidzumiana. Nat Prod Sci 2002; 8: 55-57
  • 13 Wood CA, Lee K, Vaisberg AJ. et al. A bioactive spirolactone iridoid and triterpenoids from Himatanthus sucuuba. Chem Pharm Bull 2001; 49: 1477-1478
  • 14 Rojas LB, Grignon-Dubois M, Rezzonico B. et al. Pentacyclic triterpenes from Sarcostemma clausum. Chem Nat Comp 2004; 40: 565-568
  • 15 Boutaghane N, Voutquenne-Nazabadioko L, Simon A. et al. A new triterpenic diester from the aerial parts of Chrysanthemun macrocarpum. Phytochem Lett 2013; 6: 519-525
  • 16 Le Gall GL, Colquhoun IJ, Davis AL. et al. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem 2003; 51: 2447-2456
  • 17 Abe F, Yamauchi T, Honda K. et al. Conduritol F glucosides and terpenoid glucosides from Cynanchum liukiuense and distribution of conduritol F glucosides in several Asclepiadaceous plants. Chem Pharm Bull 2000; 48: 1090-1092
  • 18 Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28: 543-593
  • 19 Papi Reddy K, Singh AB, Puri A. et al. Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg Med Chem Lett 2009; 19: 4463-4466
  • 20 Ortiz-Andrade RR, García-Jiménez S, Castillo-España P. et al. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. J Ethnopharmacol 2007; 109: 48-53
  • 21 Padilha MM, Vilela FC, Rocha CQ. et al. Antiinflammatory properties of Morus nigra leaves. Phytother Res 2010; 24: 1496-1500
  • 22 Machado ART, Lage GA, Medeiros FS. et al. Quantitative analysis of trigonelline in some Annona species by proton NMR spectroscopy. Nat Prod Bioprospect 2013; 3: 158-160
  • 23 Angelaud R, Babot O, Charvat T. et al. Desymmetrization of cyclohexadienylsilanes. Regio-, diastereo-, and enantioselective access to sugar mimics. J Org Chem 1999; 64: 9613-9624
  • 24 Worawalai W, Rattanangkool E, Vanitcha A. et al. Concise synthesis of (+)-conduritol F and inositol analogues from naturally available (+)-proto-quercitol and their glucosidase inhibitory activity. Bioorg Med Chem Lett 2012; 22: 1538-1540
  • 25 Benavente-García O, Castillo J, Lorente J. et al. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 2000; 68: 457-462
  • 26 Gutiérrez-Nicolás F, Gordillo-Román B, Oberti JC. et al. Synthesis and anti-HIV activity of lupane and olean-18-ene derivatives. Absolute configuration of 19,20-epoxylupanes by VCD. J Nat Prod 2012; 75: 669-676
  • 27 Liu Y, Tingting B, Wang G. et al. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn-Schmiedeberg's Arch Pharmacol 2015; 388: 295-304
  • 28 Hwang YJ, Lee EJ, Kim HR. et al. Molecular mechanisms of luteolin 7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep 2013; 46: 611-616
  • 29 Andreu-Fernández V, Sancho M, Genovés A. et al. Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. PNAS 2007; 114: 313-315
  • 30 Nyström L, Lampi AM, Rita H. et al. Effects of processing on availability of total plant sterols, steryl ferulates and steryl glycosides from wheat and rye bran. J Agric Food Chem 2007; 55: 9059-9065
  • 31 Van Beek TA. Chemical analysis of Ginkgo bioloba leaves and extracts. J Chromatogr A 2002; 967: 21-55
  • 32 Herebian D, Hanisch B, Marner FJ. Strategies for gathering structural information on unknown peaks in the GC/MS analysis of Corynebacterium glutamicum cell extracts. Metabolomics 2005; 1: 317-324
  • 33 Liu XK, Ye BJ, Wu Y. et al. Synthesis and anti-tumor evaluation of panaxadiol derivatives. Eur J Med Chem 2011; 46: 1997-2002
  • 34 Jackson JE. A user’s guide to principal components. New York: Wiley; 1991
  • 35 Barltrop JA, Owen TC, Cory AH. et al. 5-(3-Carbomethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenylterazolium bromide (MTT) reducing to purple water-soluble formazans as cell viability indicators. Bioorg Med Chem Lett 1991; 1: 611-614