neuroreha 2017; 09(04): 172-178
DOI: 10.1055/s-0043-120319
Schwerpunkt Robotik
Georg Thieme Verlag KG Stuttgart · New York

Spezifische Roboteransätze für Kinder

Judith Graser
Further Information

Publication History

Publication Date:
08 December 2017 (online)

Zusammenfassung

„Können wir jetzt etwas anderes machen?“ Diesen Satz kennt jede Person, die therapeutisch mit Kindern arbeitet. Nach ein paar Wiederholungen einer Aufgabe oder Übung wird es langweilig. Dabei zeigen gerade repetitive, intensive und aufgabenorientierte Therapiemethoden die größten Erfolge in der Neurorehabilitation.

 
  • Literatur

  • 1 Battig W. Intratask interference as a source of facilitation in transfer and retention. In Thompson RF, Voss JF. eds. Topics in Learning and Performance. New York, NY: Academic Press; 1972: 131-159
  • 2 Battig W. The flexibility of human memory. In: Cermak L, Craik F. eds. Levels of Processing in Human Memory. Hillsdale, NJ: Erlbaum; 1979: 23-44
  • 3 Beilock SL, Horger M, Bertenthal BI. et al. When does haste make waste? Speed-Accuracy-Tradeoff, skill level, and the tools of the trade. Journal of Experimental Psychology 2008; 14 (04) 340-352
  • 4 Bernstein N. The coordination and regulation of movements. London: Pergamon Press; 1967
  • 5 Bonney E, Jelsma D, Ferguson G. et al. Variable training does not lead to better motor learning compared to repetitive training in children with and without DCD when exposed to active video games. Research in Developmental Disabilities 2017; 62 (02) 124-136
  • 6 Boyd L, Winstein CJ. Explicit information interferes with implicit motor learning of both continuous and discrete movement tasks after stroke. Journal of Neurologic Physical Therapy 2006; 30 (02) 46-57
  • 7 Del Rey P, Whitehurst M, Wughalter E. et al. Contextual interference and experience in acquisition and transfer. Perceptual and Motor Skills 1983; 57 (01) 241 DOI: 10.2466/pms.1983.57.1.241
  • 8 Del Rey P. Training and contextual interference effects on memory and transfer. Research Quarterly for Exercise and Sport 1989; 60 (04) 342-347 DOI: 10.1080/02701367.1989.10607461
  • 9 Duff S, Gordon AM. Learning of grasp control in children with hemiplegic cerebral palsy. Developmental Medicine and Child Neurology 2003; 45 (11) 746-757 DOI: 10.1017/S0012162203001397
  • 10 Edwards JM, Elliot D, Lee TD. Contextual interference effects during skill acquisition and transfer in Down’s Syndrome adolescents. Adapted Physical Activity Quarterly 1986; 3: 250-258
  • 11 Elliott D, Hansen S, Mendozy J. et al. Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior 2004; 36 (03) 339-351
  • 12 Frascarelli F, Masia L, Di Rosa G. et al. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. European Journal of Physical and Rehabilitation Medicine 2009; 45: 135-141
  • 13 Gordon AM, Duff SV. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Developmental Medicine & Child Neurology 1999; 41 (09) 586-591 DOI: 10.1111/j.1469–8749.1999.tb00661.x
  • 14 Graser JV, Bastiaenen C, van Hedel HJ. The role of the practice order: A systematic review about contextual interference in children. 2017 [submitted]
  • 15 Guthrie E. The psychology of learning Harper; 1952
  • 16 Heitz RP. The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience 2014; 8 (June) 1-19 DOI: 10.3389/fnins.2014.00150
  • 17 Jans M. Children as citizens: Towards a contemporary notion of child participation. Childhood 2004; 11 (27) 27-44
  • 18 Jelsma O, Pieters JM. Practice schedule and cognitive style interaction in learning a maze task. Applied Cognitive Psychology 1989; 3 (01) 73-83
  • 19 Keller U, Van Hedel HJA, Klamroth-Marganska V. et al. ChARMin: The first actuated exoskeleton robot for pediatric arm rehabilitation. IEEE/ASME Transactions on Mechatronics 2016; 21 (05) 2201-2213 DOI: 10.1109/TMECH.2016.2559799
  • 20 Keller JW, van Hedel HJ. Weight-supported training of the upper extremity in children with cerebral palsy: A motor learning study. Journal of NeuroEngineering and Rehabilitation. 2017 [in press]
  • 21 Kleim JA, Barbay S, Nudo RJ. et al. Functional reorganization of the rat motor cortex following motor skill learning. Journal of Neurophysiology 1998; 80: 3321-3325
  • 22 Krakauer JW. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology 2006; 19 (01) 84-90 DOI: 10.1097/01.wco.0000200544.29915.cc
  • 23 Lang CE, Macdonald JR, Gnip C. Counting repetitions: An observational study of outpatient therapy for people with hemiparesis. Journal of Neurologic Physical Therapy 2007; 31: 3-10 DOI: 10.1097/01.NPT.0000260568.31746.34
  • 24 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurology 2009; 8 (08) 741-754 DOI: 10.1016/S1474–4422(09)70150–4
  • 25 Lee TD, Magill RA. The locus of contextual interference in motor-skill acquisition. Journal of Experimental Psychology: Learning, Memory,. and Cognition 1983; 9 (04) 730-746 DOI: 10.1037/0278–7393.9.4.730
  • 26 Lee TD, Magill RA. Can forgetting facilitate skill acquisition?. In: Goodman D, Wilberg R, Franks I. eds. Differing perspectives in motor learning, memory, and control. New York: Elsevier Science; 1985: 3-21
  • 27 Lin CHJ, Fisher BE, Winstein CJ. et al. Contextual interference effect: Elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior 2008; 40 (06) 578-586 DOI: 10.3200/JMBR.40.6.578–586
  • 28 Magill RA, Hall KG. A review of the contextual interference effect in motor skill acquisition. Human Movement Science 1990; 9 (03) –5 241-289 DOI: 10.1016/0167–9457(90)90005-X
  • 29 Nef T, Mihelj M, Riener R. ARMin: A robot for patient-cooperative arm therapy. Medical & Biological Engineering & Computing 2007; 45: 887-900 DOI: 10.1007/s11517–007–0226–6
  • 30 Nicholson JH, Morton RE, Attfield S. et al. Assessment of upper-limb function and movement in children with cerebral palsy wearing lycra garments. Developmental Medicine and Child Neurology 2001; 43 (06) 384-391 DOI: 10.1017/S001216220100072X
  • 31 Nordin N, Xie SQ, Wünsche B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: A review. Journal of NeuroEngineering and Rehabilitation 2014; 11 (01) 137
  • 32 Nudo RJ, Milliken GW, Merzenich MM. Use-dependent primary motor alterations of movement representations cortex of adult squirrel monkeys. Journal of Neuroscience 1996; 16: 785-807
  • 33 Pigott RE, Shapiro DC. Motor schema: The structure of the variability session. Research Quarterly for Exercise and Sport 1984; 55 (01) 41-45 DOI: 10.1080/02701367.1984.10605353
  • 34 Pollock BJ, Lee TD. Dissociated contextual interference effects in children and adults. Perceptual and Motor Skills 1997; 84 (3 Pt 1) 851-858 DOI: 10.2466/pms.1997.84.3.851
  • 35 Prado MTA, Luiz FDCGL, da Silva TD. et al. Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Research in Developmental Disabilities 2017; 64: 56-63
  • 36 Schmidt RA, Lee TD. Motor learning and performance. From principles to application. 5th ed.. Champaign, IL: Human Kinetics; 2014
  • 37 Schmidt RA, Wrisberg CA. Motor learning and performance: A situation-based learning approach. 4th ed.. Champaign, IL: Human Kinetics; 2008
  • 38 Shadmehr R, Mussa-Ivaldi F. Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience 1994; 14 (5 Pt2) 3208-3224
  • 39 Shea J, Morgan R. Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory 1979; 5 (02) 179
  • 40 Shea J, Zimny S. Contextual effects in memory and learning movement information. In: Magill R. ed. Memory and control of action. Amsterdam: Elsevier; 1983: 345-366