Int J Sports Med 2018; 39(01): 37-49
DOI: 10.1055/s-0043-118008
Orthopedics & Biomechanics
© Georg Thieme Verlag KG Stuttgart · New York

MRI Cartilage Assessment of the Subtalar and Midtarsal Joints During a Transcontinental Ultramarathon – New Insights into Human Locomotion

Uwe Hans-Werner Schütz
1   Universitatsklinikum Ulm, Klinik für Diagnostische und Interventionelle Radiologie, Ulm, Germany
,
Christian Billich
1   Universitatsklinikum Ulm, Klinik für Diagnostische und Interventionelle Radiologie, Ulm, Germany
,
Daniel Schoss
1   Universitatsklinikum Ulm, Klinik für Diagnostische und Interventionelle Radiologie, Ulm, Germany
,
Meinrad Beer
1   Universitatsklinikum Ulm, Klinik für Diagnostische und Interventionelle Radiologie, Ulm, Germany
,
Jutta Ellermann
2   University of Minnesota, Department of Radiology (CMRR), Minneapolis, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf



accepted after revision 19. Juli 2017

Publikationsdatum:
30. November 2017 (online)

Abstract

MR measurements can be accurately performed during 4486 km of running, opening a window into in vivo assessment of hindfoot articular cartilage under extreme ultra-endurance loading. This observational cross-sectional study included 22 randomized participants of TransEurope FootRace between Italy and the North Cape, which was accompanied by a trailer-mounted 1.5T MRI scanner over 9 weeks. Four follow up MR examinations of subtalar and midtarsal joints were performed. Statistics of cartilage T2*  and thickness were obtained. Nearly all observed joints showed an initial significant mean T2*  increase of 20.9% and 26.3% for the left and right side, followed by a relative decrease of 28.5% and 16.0% during the second half, respectively. It could be demonstrated that mobile MRI field studies allow in vivo functional tissue observations under extreme loading. Elevated T2*  values recovered during the second half of the ultramarathon supported the evidence that this response is a physiological adaptive mechanism of chondrocyte function via upregulation of de novo synthesis of proteoglycans and collagen. These changes occurred in a distinct asymmetric pattern leaving a “biochemical signature” of articular cartilage that allows in vivo insight into joint loading. In conclusion, the normal articular cartilage of the hindfoot is resilient and adaptive, leaving extreme endurance activities up to limitless human ambition.

Supplementary Material

 
  • References

  • 1 Arokoski J, Kiviranta I, Jurvelin J, Tammi M, Helminen HJ. Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum 1993; 36: 1451-1459
  • 2 Arokoski JP, Hyttinen MM, Lapveteläinen T, Takács P, Kosztáczky B, Módis L, Kovanen V, Helminen H. Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann Rheum Dis 1996; 55: 253-264
  • 3 Bader DL, Kempson GE. The short-term compressive properties of adult human articular cartilage. Biomed Mater Eng 1994; 4: 245-256
  • 4 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
  • 5 Carpes FP, Mota CB, Faria IE. On the bilateral asymmetry during running and cycling – a review considering leg preference. Phys Ther Sport 2010; 11: 136-142
  • 6 Chakravarty EF, Hubert HB, Lingala VB, Zatarain E, Fries JF. Long distance running and knee osteoarthritis. A prospective study. Am J Prev Med 2008; 35: 133-138
  • 7 Cohen J. The t-Test for Means. In: Cohen J. (ed) Statistical Power Analysis for the Behavioral Sciences. 2nd ed Hillsdale: Lawrence Erlbaum Associates; 1988. 82
  • 8 Cymet TC, Sinkov V. Does long-distance running cause osteoarthritis?. J Am Osteopath Assoc 2006; 106: 342-345
  • 9 Domayer SE, Welsch GH, Dorotka R, Mamisch TC, Marlovits S, Szomolanyi P, Trattnig S. MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol 2008; 12: 302-317
  • 10 Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): Morphological assessment. Osteoarthritis Cartilage 2006; 14: A46-A75
  • 11 Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat 2006; 208: 491-512
  • 12 Freund W, Weber F, Billich C, Schuetz UH. The foot in multistage ultra-marathon runners: Experience in a cohort study of 22 participants of the Trans Europe Footrace Project with mobile MRI. BMJ Open 2012; 2:
  • 13 Galois L, Etienne S, Grossin L, Cournil C, Pinzano A, Netter P, Mainard D, Gillet P. Moderate-impact exercise is associated with decreased severity of experimental osteoarthritis in rats. Rheumatology (Oxford) 2003; 42: 692-693
  • 14 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am 2005; 43: 641-653
  • 15 Grodzinsky AJ, Levenston ME, Jin M, Frank EH. Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2000; 2: 691-713
  • 16 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 17 Hesper T, Hosalkar HS, Bittersohl D, Welsch GH, Krauspe R, Zilkens C, Bittersohl B. T2*  mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 2014; 43: 1429-1445
  • 18 Jepsen JR, Laursen LH, Hagert CG, Kreiner S, Larsen AI. Diagnostic accuracy of the neurological upper limb examination I: inter-rater reproducibility of selected findings and patterns. BMC neurology 2006; 6: 8
  • 19 Jurvelin J, Säämänen AM, Arokoski J, Helminen HJ, Kiviranta I, Tammi M. Biomechanical properties of the canine knee articular cartilage as related to matrix proteoglycans and collagen. Eng Med 1988; 17: 157-162
  • 20 Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB. Recovery of the menisci and articular cartilage of runners after cessation of exercise: additional aspects of in vivo investigation based on 3-dimensional magnetic resonance imaging. Am J Sports Med 2008; 36: 966-970
  • 21 Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Saamanen AM, Helminen HJ. Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise. Clin Orthop Relat Res 1992; 283: 302-308
  • 22 Kiviranta I, Tammi M, Jurvelin J, Säämänen AM, Helminen HJ. Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 1988; 6: 188-195
  • 23 Krampla WW, Newrkla SP, Kroener AH, Hruby WF. Changes on magnetic resonance tomography in the knee joints of marathon runners: A 10-year longitudinal study. Skeletal Radiology 2008; 37: 619-626
  • 24 Lapveteläinen T, Hyttinen M, Lindblom J, Långsjö TK, Sironen R, Li SW, Arita M, Prockop DJ, Puustjärvi K, Helminen HJ. More knee joint osteoarthritis (OA) in mice after inactivation of one allele of type II procollagen gene but less OA after lifelong voluntary wheel running exercise. Osteoarthritis Cartilage 2001; 9: 152-160
  • 25 Levine BD, Thompson PD. Marathon maladies. N Engl J Med 2005; 352: 1516-1518
  • 26 Luke AC, Stehling C, Stahl R, Li X, Kay T, Takamoto S, Ma B, Majumdar S, Link T. High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: Does long-distance running lead to cartilage damage?. Am J Sports Med 2010; 38: 2273-2280
  • 27 Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH. Quantitative T2 mapping of knee cartilage: Differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading--initial results. Radiology 2010; 254: 818-826
  • 28 Mosher TJ. MRI of osteochondral injuries of the knee and ankle in the athlete. Clin Sports Med 2006; 25: 843-866
  • 29 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8: 355-368
  • 30 Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 2002; 4: 175-209
  • 31 Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging 2008; 28: 175-180
  • 32 Reeck J, Felten N, McCormack AP, Kiser P, Tencer AF, Sangeorzan BJ. Support of the talus: A biomechanical investigation of the contributions of the talonavicular and talocalcaneal joints, and the superomedial calcaneonavicular ligament. Foot Ankle Int. 1998; 19: 674-682
  • 33 Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, Reddy R. 3D-T1rho-relaxation mapping of articular cartilage: In vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 2004; 11: 741-749
  • 34 Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: A four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthrit Rhema 2005; 52: 3507-3514
  • 35 Säämämen AM, Kiviranta I, Jurvelin J, Helminen HJ, Tammi M. Proteoglycan and collagen alterations in canine knee articular cartilage following 20 km daily running exercise for 15 weeks. Connect Tissue Res 1994; 30: 191-201
  • 36 Sammarco VJ. The talonavicular and calcaneocuboid joints: anatomy, biomechanics, and clinical management of the transverse tarsal joint. Foot Ankle Clin 2004; 9: 127-145
  • 37 Samosky JT, Burstein D, Grimson WE, Howe R, Martin S, Gray ML. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibia plateau. J Orthop Res 2005; 23: 93-101
  • 38 Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: Comparison of MR arthrography and CT arthrography. Skeletal Radiol 2003; 32: 259-265
  • 39 Schütz UH, Billich C, König K, Würslin C, Wiedelbach H, Brambs HJ, Machann J. Characteristics, changes and influence of body composition during a 4486 km transcontinental ultramarathon: Results from the Trans Europe Foot Race mobile whole body MRI-project. BMC Med 2013; 11: 122
  • 40 Schütz UH, Ellermann J, Schoss D, Wiedelbach H, Beer M, Billich C. Biochemical cartilage alteration and unexpected signal recovery in T2*  mapping observed in ankle joints with mobile MRI during a transcontinental multistage footrace over 4486 km. Osteoarthritis Cartilage 2014; 22: 1840-1850
  • 41 Schütz UH, Schmidt-Trucksäss A, Knechtle B, Machann J, Wiedelbach H, Ehrhardt M, Freund W, Gröninger S, Brunner H, Schulze I, Brambs HJ, Billich C. The TransEurope FootRace Project: Longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon. BMC Med 2012; 10: 78
  • 42 Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 2004; 51: 286-290
  • 43 Toyoda T, Seedhom BB, Kirkham J, Bonass WA. Upregulation of aggrecan and type II collagen mRNA expression in bovine chondrocytes by the application of hydrostatic pressure. Biorheology 2003; 40: 79-85
  • 44 Welsch GH, Mamisch TC, Weber M, Horger W, Bohndorf K, Trattnig S. High-resolution morphological and biochemical imaging of articular cartilage of the ankle joint at 3.0T using a new dedicated phased array coil: in vivo reproducibility study. Skeletal Radiol 2008; 37: 519-526
  • 45 Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, Marlovits S, Mamisch TC. T2 and T2*  mapping in patients after matrix-associated autologous chondrocyte transplantation: Initial results on clinical use with 3.0-Tesla MRI. Eur Radiol 2010; 20: 1515-1523