Rofo 2018; 190(02): 144-151
DOI: 10.1055/s-0043-115898
Musculoskeletal System
© Georg Thieme Verlag KG Stuttgart · New York

Influence of Age, BMI, Gender and Lumbar Level on T1ρ Magnetic Resonance Imaging of Lumbar Discs in Healthy Asymptomatic Adults

Einfluss von Alter, Geschlecht, BMI und lumbalem Level auf T1ρ-MRT-Bildgebung lumbaler Bandscheiben gesunder asymptomatischer Erwachsener
Raphael Gübitz
1   Department of Radiology and Neuroradiology, Asklepios Hospital Altona, Hamburg, Germany
,
Tobias Lange
2   Department of Orthopaedics and Tumor Orthopaedics, University Hospital Münster, Münster, Germany
,
Georg Gosheger
2   Department of Orthopaedics and Tumor Orthopaedics, University Hospital Münster, Münster, Germany
,
Walter Heindel
3   Department of Clinical Radiology, University Hospital Münster, Münster, Germany
,
Thomas Allkemper
3   Department of Clinical Radiology, University Hospital Münster, Münster, Germany
,
Christoph Stehling
4   Clinic for Radiology and Neuroradiology, Sankt-Barbara Hospital Ham-Heessen, Hamm, Germany
,
Joachim Gerss
5   Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
,
Christian Kanthak
6   Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
,
Tobias L. Schulte
7   Department of Orthopaedics and Trauma Surgery, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
› Author Affiliations
Further Information

Publication History

07 March 2017

06 June 2017

Publication Date:
01 September 2017 (online)

Abstract

Purpose To assess the T1ρ range of lumbar intervertebral discs in healthy asymptomatic individuals at 1.5 T and to investigate the influence of age, body mass index (BMI), gender, and lumbar level on T1ρ relaxation.

Materials and Methods In a prospective study, a total of 81 volunteers aged 20 – 80 years were included in this study and divided into three age groups (A: 20 – 39y; B: 40 – 59y; C: 60 – 80y). All of the volunteers underwent magnetic resonance imaging (MRI) at 1.5 T with acquisition of sagittal T1ρ images. The calculated T1ρ relaxation times were correlated with age, BMI, gender, and lumbar level relative to the total disc, the annulus fibrosus, and the nucleus pulposus.

Results Age had a significant influence on T1ρ relaxation times at all lumbar levels, with increasing age being associated with reduced relaxation times. There was also a significant difference between age groups A vs. C and B vs. C (P = 0.0008 and P = 0.0149, respectively). No significant differences in T1ρ relaxation time were observed between men and women (P > 0.05). BMI showed a significant negative correlation with T1ρ relaxation times (P < 0.0001). Analysis of the lumbar level revealed a significant decrease in relaxation times from L1/2 to L5 / S1 (P = 0.0013).

Conclusion Increasing age correlated significantly with advanced lumbar disc degeneration in asymptomatic individuals, particularly in those aged 60 or older. Increasing BMI correlated significantly with increasing degeneration. The lower discs showed more degeneration than the upper ones.

Key Points

  • Increasing age significantly reduces the T1ρ relaxation time in the intervertebral discs (P < 0.05)

  • Gender does not significantly influence T1ρ relaxation times (P > 0.05)

  • BMI shows a significant negative correlation with T1ρ relaxation times (P < 0.01)

  • Significantly shorter relaxation times in lower lumbar spine vs. upper lumbar spine (P < 0.01)

Citation Format

  • Gübitz R, Lange T, Gosheger G et al. Influence of Age, BMI, Gender and Lumbar Level on T1ρ Magnetic Resonance Imaging of Lumbar Discs in Healthy Asymptomatic Adults. Fortschr Röntgenstr 2018; 190: 144 – 151

Zusammenfassung

Ziel Ermittlung der Größenordnung der T1ρ Werte der lumbalen Bandscheiben in gesunden asymptomatischen Probanden bei 1,5 T. Zusätzlich wurde der Einfluss von Alter, body mass index (BMI), Geschlecht und lumbaler Level auf die T1ρ Relaxation.

Material und Methoden In der prospektiven Studie wurden 81 freiwillige Probanden zwischen 20 und 80 Jahren eingeschlossen und in drei Altersgruppen unterteilt (A, 20 – 39 Jahre; B, 40 – 59 Jahre; C, 60 – 80 Jahre). Alle Probanden wurden in einem 1,5 T MRT untersucht und sagittale T1ρ Bilder akquiriert. Die ermittelten T1ρ Relaxationszeiten wurden korreliert mit Alter, BMI, Geschlecht und lumbalem Level jeweils bezogen auf die gesamte Bandscheibe, den Annulus fibrosus und den Nucleus pulposus.

Ergebnisse Das Alter zeigte einen signifikanten Einfluss auf die T1ρ Relaxationszeit in allen lumbalen Leveln wobei zunehmendes Alter mit abnehmenden Relaxationszeiten verbunden war. Darüber hinaus zeigte sich ein signifikanter Unterschied zwischen den Altersgruppen A vs. C und B vs. C (P = 0,0008 und P = 0,0149). Kein signifkanter Unterschied bestand zwischen den T1ρ Relaxationszeiten von Männern und Frauen (P > 0,05). Der BMI zeigte eine signifikant negative Korrelation mit der T1ρ Relaxationszeit (P < 0,0001). Hinsichtlich des lumbalen Levels zeigte sich eine signifikante Abnahme der Relaxationszeiten von L 1/2 zu L5 / S1 (P = 0,0013).

Schlussfolgerung Steigendes Alter korrelierte signifikant mit zunehmender Degeneration lumbaler Bandscheiben bei asymptomatischen Probanden, insbesondere ab einem Alter von 60 Jahren. Ein hoher BMI korrelierte ebenfalls signifikant mit zunehmender Degeneration. Die unteren lumbalen Bandscheiben zeigten insgesamt eine fortgeschrittenere Degeneration als die oberen.

Kernaussagen

  • Steigendes Alter vermindert die T1ρ Relaxationszeit der Bandscheiben signifikant (P < 0,05)

  • Geschlecht zeigt keinen signifikanten Einfluss auf die T1ρ Relaxationszeit (P > 0,05)

  • BMI korreliert signifikant negativ mit der T1ρ Relaxationszeit (P < 0,01).

  • Signifikant niedrigere Relaxationszeiten der unteren gegenüber oberen LWS (P < 0,01).

 
  • References

  • 1 Berns DH, Blaser SI, Modic MT. Magnetic resonance imaging of the spine. Clin Orthop Relat Res 1989; 244: 78-100
  • 2 Boden SD, Davis DO, Dina TS. et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 1990; 72: 403-408
  • 3 Jensen MC, Brant-Zawadzki MN, Obuchowski N. et al. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 1994; 331: 69-73
  • 4 Weishaupt D, Zanetti M, Hodler J. et al. MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology 1998; 209: 661-666
  • 5 Brayda-Bruno M, Tibiletti M, Ito K. et al. Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. Eur Spine J 2014; 23 (Suppl. 03) S315-S323
  • 6 Auerbach JD, Johannessen W, Borthakur A. et al. In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging. Eur Spine J 2006; (Suppl. 03) S338-S344
  • 7 Johannessen W, Auerbach JD, Wheaton AJ. et al. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine (Phila Pa 1976) 2006; 31: 1253-1257
  • 8 Akella SV, Regatte RR, Gougoutas AJ. et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med 2001; 46: 419-423
  • 9 Mulligan KR, Ferland CE, Gawri R. et al. Axial T1rho MRI as a diagnostic imaging modality to quantify proteoglycan concentration in degenerative disc disease. Eur Spine J 2014; 24: 2395-2401
  • 10 Zuo J, Joseph GB, Li X. et al. In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine (Phila Pa 1976) 2012; 37: 214-221
  • 11 Blumenkrantz G, Zuo J, Li X. et al. In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 2010; 63: 1193-1200
  • 12 Wang YX, Zhao F, Griffith JF. et al. T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI. Eur Radiol 2013; 23: 228-234
  • 13 Wang YX, Griffith JF, Leung JC. et al. Age related reduction of T1rho and T2 magnetic resonance relaxation times of lumbar intervertebral disc. Quant Imaging Med Surg 2014; 4: 259-264
  • 14 Blumenkrantz G, Li X, Han ET. et al. A feasibility study of in vivo T1rho imaging of the intervertebral disc. Magn Reson Imaging 2006; 24: 1001-1007
  • 15 Filippi CG, Duncan CT, Watts R. et al. In vivo quantification of T1rho in lumbar spine disk spaces at 3 T using parallel transmission MRI. Am J Roentgenol 2013; 201: W110-W116
  • 16 Zhou Z, Jiang B, Zhou Z. et al. Intervertebral disk degeneration: T1rho MR imaging of human and animal models. Radiology 2013; 268: 492-500
  • 17 Zobel BB, Vadala G, Del VescovoR. et al. T1rho magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine (Phila Pa 1976) 2012; 37: 1224-1230
  • 18 Farshad-Amacker NA, Hughes AP, Aichmair A. et al. Determinants of evolution of endplate and disc degeneration in the lumbar spine: a multifactorial perspective. Eur Spine J 2014; 23: 1863-1868
  • 19 Kanayama M, Togawa D, Takahashi C. et al. Cross-sectional magnetic resonance imaging study of lumbar disc degeneration in 200 healthy individuals. J Neurosurg Spine 2009; 11: 501-507
  • 20 Takatalo J, Karppinen J, Taimela S. et al. Body mass index is associated with lumbar disc degeneration in young Finnish males: subsample of Northern Finland birth cohort study 1986. BMC Musculoskelet Disord 2013; 14: 87
  • 21 Hangai M, Kaneoka K, Kuno S. et al. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J 2008; 8: 732-740
  • 22 Samartzis D, Karppinen J, Mok F. et al. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am 93: 662-670
  • 23 Wang YX, Griffith JF, Ma HT. et al. Relationship between gender, bone mineral density, and disc degeneration in the lumbar spine: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. Osteoporos Int 2011; 22: 91-96
  • 24 Siemionow K, An H, Masuda K. et al. The effects of age, sex, ethnicity, and spinal level on the rate of intervertebral disc degeneration: a review of 1712 intervertebral discs. Spine (Phila Pa 1976) 2011; 36: 1333-1339
  • 25 Vadala G, Russo F, Battisti S. et al. Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by t1rho-magnetic resonance imaging. Spine (Phila Pa 1976) 2014; 39: 1881-1886
  • 26 Evans W, Jobe W, Seibert C. A cross-sectional prevalence study of lumbar disc degeneration in a working population. Spine (Phila Pa 1976) 1989; 14: 60-64
  • 27 Ong A, Anderson J, Roche J. A pilot study of the prevalence of lumbar disc degeneration in elite athletes with lower back pain at the Sydney 2000 Olympic Games. Br J Sports Med 2003; 37: 263-266
  • 28 Videman T, Battie MC, Gill K. et al. Magnetic resonance imaging findings and their relationships in the thoracic and lumbar spine. Insights into the etiopathogenesis of spinal degeneration. Spine (Phila Pa 1976) 1995; 20: 928-935
  • 29 Keorochana G, Taghavi CE, Lee KB. et al. Effect of sagittal alignment on kinematic changes and degree of disc degeneration in the lumbar spine: an analysis using positional MRI. Spine (Phila Pa 1976) 2011; 36: 893-898
  • 30 Allkemper T, Sagmeister F, Cicinnati V. et al. Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology 2014; 271: 408-415