Deutsche Zeitschrift für Onkologie 2017; 49(03): 129-135
DOI: 10.1055/s-0043-115681
Forschung
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Herzglykoside und ihr Potenzial für die Tumortherapie

Cardiac Glycosides and their Potential Role as Anti-Tumor Agents
Jennifer Munkert
1   Lehrstuhl für Pharmazeutische Biologie, FAU Erlangen-Nürnberg
,
Wolfgang Kreis
1   Lehrstuhl für Pharmazeutische Biologie, FAU Erlangen-Nürnberg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
13. September 2017 (online)

Zusammenfassung

Herzglykoside sind eine Gruppe von Naturstoffen, welche ein Steroidgerüst mit einem angefügten ungesättigten Lactonring besitzen und aufgrund einer Inhibierung der Na+/K+-ATPase kräftigend auf den Herzmuskel einwirken. Über lange Jahre hinweg wurden Herzglykoside zur Therapie von Herzinsuffizienz und Behandlung von Herzrhythmusstörungen eingesetzt. Neuere Studien bescheinigen dieser Substanzklasse allerdings auch ein hohes Potenzial für die Krebstherapie. Herzglykoside inhibieren das Tumorzellwachstum in nanomolaren Konzentrationen. Die molekularen Mechanismen, die hinter der antitumoralen Aktivität stehen, werden gegenwärtig noch untersucht. Dieser Übersichtsartikel befasst sich mit der Geschichte der Herzglykoside, der molekularen Basis ihrer klassischen Anwendung (Herzinsuffizienz) und relevanten Befunden und klinischen Studien, die eine zukünftige Anwendung bestimmter Herzglykoside in der Tumortherapie aussichtsreich erscheinen lassen.

Abstract

Cardiac glycosides are a group of natural products that share a steroid-like structure with an unsaturated lactone ring. They induce cardiontonic effects by inhibiting Na+/K+-ATPase. Cardiac glycosides have been used traditionally in the treatment of congestive heart failure. More recent studies suggested that cardiac glycosides may also be useful in cancer therapy as they inhibit cell proliferation and cancer cell growth at nanomolar concentrations. The underlying molecular mechanisms are still under investigation. This short review summarizes the history of cardiac glycosides, the molecular basis of the classical use (cardiac insufficiency) as well as relevant facts and clinical studies concerning their potential as anti-tumor agents.

 
  • Literatur

  • 1 Afaq F, Saleem M, Aziz MH. et al. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion markers in CD-1 mouse skin by oleandrin. Toxicol Appl Pharmacol 2004; 195: 361-369
  • 2 Babula P, Masarik M, Adam V. et al. From Na+/K+-ATPase and cardiac glycosides to cytotoxicity and cancer treatment. Anticancer Agents Med Chem 2013; 13: 1069-1087
  • 3 Baytar IA. T.M.A. An encycloepaedia of medicine and nutrition. Dar Al-Kutub, Lebanon; 1992
  • 4 Bielawski K, Winnicka K, Bielawska A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 2006; 29: 1493-1497
  • 5 Calderón-Montaño JM, Burgos-Morón E, Orta ML. et al. A hydroalcoholic extract from the leaves of Nerium oleander inhibits glycolysis and induces selective killing of lung cancer cells. Planta Med 2013; 79: 1017-1023
  • 6 Calderón-Montaño JM, Burgos-Morón E, Orta ML. et al. Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014; 2014: 794930
  • 7 Cheung JY, Zhang X-Q, Song J. et al. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). Adv Exp Med Biol 2013; 961: 175-190
  • 8 Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41: 4-34
  • 9 Durlacher CT, Chow K, Chen X-W. et al. Targeting Na+/K+ -translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 2015; 42: 427-443
  • 10 Elbaz HA, Stueckle TA, Tse W et al. Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol 2012; 1: 4
  • 11 Felth J, Rickardson L, Rosén J. et al. Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs. J Nat Prod 2009; 72: 1969-1974
  • 12 Haux J. Digitoxin is a potential anticancer agent for several types of cancer. Med Hypotheses 1999; 53: 543-548
  • 13 Iyer AKV, Zhou M, Azad N. et al. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides: oligosaccharide chain length-dependent induction of caspase-9-mediated apoptosis. ACS Med Chem Lett 2010; 1: 326-330
  • 14 Johansson S, Lindholm P, Gullbo J. et al. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anticancer Drugs 2001; 12: 475-483
  • 15 Kreis W. The foxgloves (Digitalis) revisited. Planta Med 2017; DOI: 10.1055/s-0043-111240. [Epub ahead of print]
  • 16 Laursen M, Yatime L, Nissen P. et al. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc Natl Acad Sci U S A 2013; 110: 10958-10963
  • 17 Lely AH, van Enter CH. Large-scale digitoxin intoxication. Br Med J 1970; 3: 737-740
  • 18 Lin J, Denmeade S, Carducci MA. HIF-1alpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides. Curr Cancer Drug Targets 2009; 9: 881-887
  • 19 López-Lázaro M. Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin Ther Targets 2007; 11: 1043-1053
  • 20 Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc Natl Acad Sci U S A 2009; 106: E26 author reply E27
  • 21 López-Lázaro M, Pastor N, Azrak SS. et al. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod 2005; 68: 1642-1645
  • 22 Manna SK, Sah NK, Newman RA. et al. Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res 2000; 60: 3838-3847
  • 23 Menger L, Vacchelli E, Kepp O. et al. Trial watch: cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2: e23082
  • 24 Newman RA, Kondo Y, Yokoyama T. et al. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr Cancer Ther 2007; 6: 354-364
  • 25 Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 2008; 8: 36-49
  • 26 Nolte E, Sobel A, Wach S. et al. The new semisynthetic cardenolide analog 3β-2-(1-Amantadine)-1-on-ethylamine-digitoxigenin (AMANTADIG) efficiently suppresses cell growth in human leukemia and urological tumor cell lines. Anticancer Res 2015; 35: 5271-5275
  • 27 Nolte E, Wach S, Silva IT. et al. A new semisynthetic cardenolide analog 3β-2-(1-amantadine)- 1-on-ethylamine-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines. Oncotarget 2017; 8: 11676-11691
  • 28 Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 2008; 7: 926-935
  • 29 Raghavendra PB, Sreenivasan Y, Manna SK. Oleandrin induces apoptosis in human, but not in murine cells: dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol Immunol 2007; 44: 2292-2302
  • 30 Rahimtoola S, Tak T. The use of digitalis in heart failure. Curr Probl Cardiol 1996; 21: 781-853
  • 31 Rashan LJ, Franke K, Khine MM. et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol 2011; 134: 781-788
  • 32 Schneider NFZ, Geller FC, Persich L. et al. Inhibition of cell proliferation, invasion and migration by the cardenolides digitoxigenin monodigitoxoside and convallatoxin in human lung cancer cell line. Nat Prod Res 2016; 30: 1327-1331
  • 33 Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gan 1967; 58: 521-528
  • 34 Svensson A, Azarbayjani F, Bäckman U. et al. Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res 2005; 25: 207-212
  • 35 Tian J, Li X, Liang M. et al. Changes in sodium pump expression dictate the effects of ouabain on cell growth. J Biol Chem 2009; 284: 14921-14929
  • 36 Vasić V, Momić T, Petković M. et al. Na+,K+-ATPase as the target enzyme for organic and inorganic compounds. Sensors (Basel) 2008; 8: 8321-8360
  • 37 Verma SK, Das AK, Cingoz GS. et al. In vitro culture of Digitalis L. (foxglove) and the production of cardenolides: an up-to-date review. Industrial Crops and Products 2016; 94: 20-51
  • 38 Wang H-YL, Xin W, Zhou M. et al. Stereochemical survey of digitoxin monosaccharides: new anticancer analogues with enhanced apoptotic activity and growth inhibitory effect on human non-small cell lung cancer cell. ACS Med Chem Lett 2011; 2: 73-78
  • 39 Wang Z, Zheng M, Li Z. et al. Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res 2009; 69: 6556-6564
  • 40 Winnicka K, Bielawski K, Bielawska A. et al. Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts. Nat Prod Res 2010; 24: 274-285
  • 41 Withering W. An account of the foxglove, and some of its medical uses: with practical remarks on dropsy, and other diseases /by William Withering. Birmingham: Printed by M. Swinney for G.G.J. and J. Robinson, London; 1785
  • 42 Wright JL, Hansten PD, Stanford JL. Is digoxin use for cardiovascular disease associated with risk of prostate cancer?. Prostate 2014; 74: 97-102
  • 43 Xie Z, Cai T. Na+-K+--ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 2003; 3: 157-168
  • 44 Yatime L, Laursen M, Morth JP. et al. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J Struct Biol 2011; 174: 296-306
  • 45 Zhang H, Qian DZ, Tan YS. et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A 2008; 105: 19579-19586
  • 46 Ziff OJ, Kotecha D. Digoxin: The good and the bad. Trends Cardiovasc Med 2016; 26: 585-595