Pädiatrie up2date 2017; 12(04): 335-349
DOI: 10.1055/s-0043-115278
Gastroenterologie
Georg Thieme Verlag KG Stuttgart · New York

Darmmikrobiom des Menschen: Status quo und Perspektiven

Thomas Clavel
,
Gabriele Hörmannsperger
Further Information

Publication History

Publication Date:
11 January 2018 (online)

Der Mensch besteht aus körpereigenen Zellen und Billionen von Mikroorganismen, die alle seine Körperoberflächen kolonisieren. Der Darm beherbergt das dichteste dieser mikrobiellen Ökosysteme, die sog. Darmmikrobiota. Die Identifizierung, Isolation und Charakterisierung physiologisch relevanter Bakterienstämme unseres Darmmikrobioms ist eine Voraussetzung für die weitere Entwicklung und Implementierung erfolgreicher mikrobieller Therapiestrategien.

Kernaussagen
  • Das intestinale Ökosystem beherbergt Viren, Bakterien und eukaryotische Mikroorganismen.

  • Darmbakterien übernehmen wichtige Funktionen für ihren Wirt (z. B. die Vermeidung von Darminfektionen durch Pathogene und die Stimulation des Immunsystems).

  • Molekularmethoden erlauben einen schnellen und umfangreichen Überblick über die Diversität und Zusammensetzung eines Mikrobioms zu gewinnen, sie bleiben jedoch in den meisten Fällen beschreibend.

  • Die Kultivierung von Darmmikroorganismen ermöglicht die Nutzung der isolierten Stämmen zur Aufklärung von Mikroben-Wirt-Interaktionen, viele Darmbakterien sind jedoch nur schwer zu kultivieren.

  • Die Erstkolonisierung des Menschen erfolgt bei der Geburt. Die frühkindliche intestinale Mikrobiota ist sehr empfindlich gegenüber Umwelteinflüssen und die Ernährung ist ein zentraler Einflussfaktor in der Entwicklung des frühkindlichen intestinalen Ökosystems.

  • Die Darmmikrobiota eines erwachsenen Menschen ist in ihrer Gesamtheit relativ stabil, kann jedoch durch wiederholte Störfaktoren und erhebliche Veränderungen im Lebensstil dauerhaft Veränderungen aufweisen.

  • Es existiert keine einheitliche „gesunde“ Standardmikrobiota. Viele metabolische und immunologische Erkrankungen sind mit Veränderungen in der Zusammensetzung und Funktion des intestinalen Ökosystems assoziiert.

  • Die pathophysiologische Relevanz der beobachteten krankheitsassoziierten Veränderungen ist meist unbekannt.

  • Bei FMT wird das gesamte fäkale Ökosystem eines Spenders auf den Empfänger übertragen. FMT weist bei der Infektion mit C. difficile eine hervorragende Wirksamkeit auf, bei anderen Erkrankungen ist die Datenlage unklar.

  • Die Entwicklung effektiver und risikoarmer mikrobieller Therapien ist von der erfolgreichen Identifizierung und Kultivierung protektiver Mikroorganismen abhängig.

 
  • Literatur

  • 1 Overmann J. Principles of Enrichment, Isolation, Cultivation and Preservation of Prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds. Prokaryotes. Vol. 1. New York: Springer; 2006: 80-136
  • 2 Lepage P, Leclerc MC, Joossens M. et al. A metagenomic insight into our gutʼs microbiome. Gut 2013; 62: 146-158
  • 3 Raoult D, Fournier PE, Drancourt M. What does the future hold for clinical microbiology?. Nat Rev Microbiol 2004; 2: 151-159
  • 4 Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164: 337-340
  • 5 Cummings JH, Pomare EW, Branch WJ. et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221-1227
  • 6 Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38: 996-1047
  • 7 Qin J, Li R, Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65
  • 8 Gaci N, Borrel G, Tottey W. et al. Archaea and the human gut: new beginning of an old story. World J Gastroenterol 2014; 20: 16062-16078
  • 9 Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol 2011; 2: 153
  • 10 Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials–a mycologistʼs perspective. Mycologia 2015; 107: 1057-1073
  • 11 Barr JJ, Auro R, Furlan M. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 2013; 110: 10771-10776
  • 12 Hug LA, Baker BJ, Anantharaman K. et al. A new view of the tree of life. Nat Microbiol 2016; 1: 16048
  • 13 Brugiroux S, Beutler M, Pfann C. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol 2016; 2: 16215
  • 14 Lawley TD, Clare S, Walker AW. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 2012; 8: e1002995
  • 15 Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12: 661-672
  • 16 Furusawa Y, Obata Y, Fukuda S. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-450
  • 17 Hormannsperger G, Clavel T, Haller D. Gut matters: microbe-host interactions in allergic diseases. J Aller Clin Immunol 2012; 129: 1452-1459
  • 18 Ivanov II, Atarashi K, Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485-498
  • 19 Clavel T, Lagkouvardos I, Hiergeist A. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev Mol Diagn 2016; 16: 795-805
  • 20 Suau A, Bonnet R, Sutren M. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Env Microbiol 1999; 65: 4799-4807
  • 21 Hiergeist A, Reischl U. Priority Program 1656 Intestinal Microbiota Consortium/quality assessment participants. et al. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol 2016; 306: 334-342
  • 22 Lagkouvardos I, Joseph D, Kapfhammer M. et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016; 6: 33721
  • 23 Bokulich NA, Rideout JR, Mercurio WG. et al. mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking. mSystems 2016; DOI: 10.1128/mSystems.00062-16.
  • 24 Mukherjee S, Seshadri R, Varghese NJ. et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017; 35: 676-683
  • 25 Söhngen C, Podstawka A, Bunk B. et al. BacDive–The Bacterial Diversity Metadatabase in 2016. Nucleic Acids Res 2015; 44: D581-D585
  • 26 Browne HP, Forster SC, Anonye BO. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543-546
  • 27 Lagier JC, Khelaifia S, Alou MT. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1: 16203
  • 28 Lagkouvardos I, Pukall R, Abt B. et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1: 16131
  • 29 Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 2017; 8: 493-503
  • 30 Perez-Munoz ME, Arrieta MC, Ramer-Tait AE. et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5: 48
  • 31 Bazanella M, Maier TV, Clavel T. et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 2017; 106: 1274-1286
  • 32 Dominguez-Bello MG, De Jesus-Laboy KM, Shen N. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016; 22: 250-253
  • 33 Rusconi F, Zugna D, Annesi-Maesano I. et al. Mode of delivery and asthma at school age in 9 European birth cohorts. Am J Epidemiol 2017; 185: 465-473
  • 34 Riedler J, Braun-Fahrlander C, Eder W. et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358: 1129-1133
  • 35 Brick T, Schober Y, Bocking C. et al. Omega-3 fatty acids contribute to the asthma-protective effect of unprocessed cowʼs milk. J All Clin Imm 2016; 137: 1699-1706
  • 36 Schroder PC, Illi S, Casaca VI. et al. A switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy 2017; 72: 604-615
  • 37 Bauer H, Horowitz RE, Levenson SM. et al. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol 1963; 42: 471-483
  • 38 Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol (Bp) 2016; 6: 253-271
  • 39 Bäckhed F, Roswall J, Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17: 690-703
  • 40 Koenig JE, Spor A, Scalfone N. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011; 108: 4578-4585
  • 41 Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69: 1035S-1045S
  • 42 Maldonado-Gómez MX, Martinez I, Bottacini F. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016; 20: 515-526
  • 43 Rajilić-Stojanović M, Heilig HG, Tims S. et al. Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 2012; DOI: 10.1111/1462-2920.12023.
  • 44 Martinez I, Muller CE, Walter J. Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS One 2013; 8: e69621
  • 45 Caporaso JG, Lauber CL, Costello EK. et al. Moving pictures of the human microbiome. Genome Biol 2011; 12: R50
  • 46 Lagkouvardos I, Klaring K, Heinzmann SS. et al. Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Mol Nutr Food Res 2015; 59: 1614-1628
  • 47 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-563
  • 48 OʼKeefe SJ, Li JV, Lahti L. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6: 6342
  • 49 Sonnenburg ED, Smits SA, Tikhonov M. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529: 212-215
  • 50 Martinez I, Stegen JC, Maldonado-Gomez MX. et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep 2015; 11: 527-538
  • 51 Yatsunenko T, Rey FE, Manary MJ. et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227
  • 52 Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science 2016; 352: 544-545
  • 53 Ruiz VE, Battaglia T, Kurtz ZD. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun 2017; 8: 518
  • 54 Livanos AE, Greiner TU, Vangay P. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016; 1: 16140
  • 55 Ungaro R, Bernstein CN, Gearry R. et al. Antibiotics associated with increased risk of new-onset Crohnʼs disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol 2014; 109: 1728-1738
  • 56 Tap J, Mondot S, Levenez F. et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009; 11: 2574-2584
  • 57 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266
  • 58 Manichanh C, Rigottier-Gois L, Bonnaud E. et al. Reduced diversity of faecal microbiota in Crohnʼs disease revealed by a metagenomic approach. Gut 2006; 55: 205-211
  • 59 Rajilić-Stojanović M, Biagi E, Heilig HG. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterol 2011; 141: 1792-1801
  • 60 Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 2016; DOI: 10.1128/mBio.01018-16.
  • 61 Falony G, Joossens M, Vieira-Silva S. et al. Population-level analysis of gut microbiome variation. Science 2016; 352: 560-564
  • 62 Hörmannsperger G, Schaubeck M, Haller D. Intestinal microbiota in animal models of inflammatory diseases. ILAR J 2015; 56: 179-191
  • 63 Macpherson AJ, McCoy KD. Standardised animal models of host microbial mutualism. Muc Immunol 2015; 8: 476-486
  • 64 Crouzet L, Gaultier E, DelʼHomme C. et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Mot 2013; 25: e272-e282
  • 65 Ridaura VK, Faith JJ, Rey FE. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214
  • 66 Schaubeck M, Clavel T, Calasan J. et al. Dysbiotic gut microbiota causes transmissible Crohnʼs disease-like ileitis independent of failure in antimicrobial defence. Gut 2016; 65: 225-237
  • 67 Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166: 12-27
  • 68 Laycock G, Sait L, Inman C. et al. A defined intestinal colonization microbiota for gnotobiotic pigs. Vet Immunol Immunopathol 2012; 149: 216-224
  • 69 Xiao L, Estellé J, Kiilerich P. et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol 2016; DOI: 10.1038/nmicrobiol.2016.161.
  • 70 Arrieta MC, Walter J, Finlay BB. Human Microbiota-Associated Mice: A Model with Challenges. Cell Host Microbe 2016; 19: 575-578
  • 71 Gupta K, Noble A, Kachelries KE. et al. A novel enteral nutrition protocol for the treatment of pediatric Crohnʼs disease. Inflamm Bowel Dis 2013; 19: 1374-1378
  • 72 Schwerd T, Frivolt K, Clavel T. et al. Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. J All Clin Imm 2016; 138: 592-596
  • 73 Hörmannsperger G, Haller D. Probiotika: Anforderungen und Wirkmechanismen. Pharm in uns Zeit 2012; 41: 117-122
  • 74 Breyner NM, Michon C, de Sousa CS. et al. Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kappaB pathway. Front Microbiol 2017; 8: 114
  • 75 Hörmannsperger G, von Schillde MA, Haller D. Lactocepin as a protective microbial structure in the context of IBD. Gut Microbes 2013; 4: 152-157
  • 76 Plovier H, Everard A, Druart C. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23: 107-113
  • 77 Caluwaerts S, Vandenbroucke K, Steidler L. et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 2010; 46: 564-570
  • 78 Smits LP, Bouter KE, de Vos WM. et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013; 145: 946-953
  • 79 Li SS, Zhu A, Benes V. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016; 352: 586-589
  • 80 Angelberger S, Reinisch W, Makristathis A. et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 2013; 108: 1620-1630
  • 81 Kump PK, Grochenig HP, Lackner S. et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bow Dis 2013; 19: 2155-2165
  • 82 Moayyedi P, Surette MG, Kim PT. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015; 149: 102-109.e6
  • 83 Zhang FM, Wang HG, Wang M. et al. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohnʼs disease. World J Gastroenterol 2013; 19: 7213-7216
  • 84 Paramsothy S, Kamm MA, Kaakoush NO. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 2017; 389: 1218-1228
  • 85 De Leon LM, Watson JB, Kelly CR. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol 2013; 11: 1036-1038
  • 86 Vrieze A, Van Nood E, Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916
  • 87 Sokol H, Pigneur B, Watterlot L. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105: 16731-16736
  • 88 Atarashi K, Tanoue T, Oshima K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232-236
  • 89 Petrof EO, Gloor GB, Vanner SJ. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 2013; 1: 3
  • 90 Zeevi D, Korem T, Zmora N. et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163: 1079-1094
  • 91 Fuentes S, Rossen NG, van der Spek MJ. et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J 2017; 11: 1877-1889
  • 92 Mondot S, Lepage P, Seksik P. et al. Structural robustness of the gut mucosal microbiota is associated with Crohnʼs disease remission after surgery. Gut 2016; 65: 954-962
  • 93 Ubeda C, Taur Y, Jenq RR. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120: 4332-4341
  • 94 Viaud S, Saccheri F, Mignot G. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342: 971-976
  • 95 Wu H, Esteve E, Tremaroli V. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23: 850-858