Fortschr Neurol Psychiatr 2017; 85(07): 414-431
DOI: 10.1055/s-0043-113136
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Tiefe Hirnstimulation bei Bewegungsstörungen: Evidenz und Therapiestandards

Deep brain stimulation in movement disorders: evidence and therapy standards
Yaroslav Parpaley
,
Sabine Skodda
Further Information

Publication History

Publication Date:
02 August 2017 (online)

Abstract

The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice.

Die tiefe Hirnstimulation ist ein invasives Verfahren zur kontinuierlichen Neuromodulation und wird erfolgreich zur Therapie von verschiedenen chronischen neurologischen Erkrankungen eingesetzt. Dieser Beitrag schildert die aktuelle Studienlage zu Indikationen, Wirksamkeit und Therapiestandards der präzisen und individuell modulierbaren Technik.

Kernaussagen
  • Die THS ist ein invasives Verfahren zur kontinuierlichen Neuromodulation dysfunktionaler neuronaler Netzwerke. Etablierte Indikationen sind u. a. Morbus Parkinson, Tremor und Dystonie.

  • Die THS wird in etablierten Zielgebieten für Bewegungsstörungen, wie Nucleus subthalamicus, Nucleus ventralis intermedius und Globus pallidus internus, eingesetzt.

  • In den etablierten Zielgebieten verfügt die THS über gut dokumentierte Therapieeffekte und Nebenwirkungen, eine weitgehend standardisierte Implantationstechnik und eine verbreitete mehrstufige Qualitätssicherung.

  • Der langfristige optimale Therapieeffekt der THS basiert auf einer korrekten Indikationsstellung, einer optimalen prä-, intra- und postoperativen Betreuung sowie der langfristigen zuverlässigen Nachsorge.

  • Dies erfordert ein spezialisiertes multiprofessionelles Team, insbesondere bestehend aus Neurologen bzw. Neurochirurgen, unter bedarfsweiser Einbeziehung weiterer Fachdisziplinen.

 
  • Literatur

  • 1 Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 2009; 373: 2055-2066
  • 2 Rodriguez-Oroz MC, Jahanshahi M, Krack P. et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 2009; 8: 1128-1139
  • 3 Schrag A. Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain 2000; 123: 297-2305
  • 4 Pollak P, Benabid AL, Gross C. et al. Effects of the stimulation of the subthalamic nucleus in Parkinson disease. Rev Neurol 1993; 149: 175-176
  • 5 Deutsche Gesellschaft für Neurologie (DGN). S3-Leitlinie „Idiopathisches Parkinson-Syndrom“. Im Internet: http://www.awmf.org/leitlinien/detail/ll/030-010.html (Stand: 29.11.2016)
  • 6 Coenen VA, Amtage F, Volkmann J. et al. Deep brain stimulation in neurological and psychiatric disorders. Dtsch Arztebl Int 2015; 112: 519-526
  • 7 Schuepbach WMM, Rau J, Knudsen K. et al. ; EARLYSTIM Study Group. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013; 368: 610-622
  • 8 Temel Y, Kessels A, Tan S. et al. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinson Rel Disord 2006; 12: 265-272
  • 9 Castrioto A, Volkmann J, Krack P. Postoperative management of deep brain stimulation in Parkinson’s disease. In: Aminoff MJ, Boller F, Swaab DF. , eds. Brain stimulation: handbook of clinical neurology. New York: Elsevier; 2013: 129-146
  • 10 Fasano A, Lozano AM. Deep brain stimulation for movement disorders: 2015 and beyond. Curr Opin Neurol 2015; 28: 423-436
  • 11 Deuschl G, Raethjen J, Hellriegel H. et al. Treatment of patients with essential tremor. Lancet Neurol 2011; 10: 148-161
  • 12 Blomstedt P, Hariz GM, Hariz MI. et al. Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg 2009; 21: 504-509
  • 13 Deutsche Gesellschaft für Neurologie (DGN). S1-Leitlinie „Tremor“. Im Internet: http://www.awmf.org/leitlinien/detail/ll/030-011.html (Stand: 29.11.2016)
  • 14 Diederich NJ, Verhagen Metman L, Bakay RA. et al. Ventral intermediate thalamic stimulation in complex tremor syndromes. Stereotact Funct Neurosurg 2008; 86: 167-172
  • 15 Panov F, Gologorsky Y, Connors G. et al. Deep brain stimulation in DYT1 dystonia. Neurosurgery 2013; 73: 86-93
  • 16 Kupsch A, Benecke R, Müller J. et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006; 355: 1978-1990
  • 17 FitzGerald JJ, Rosendal F, de Pennington N. et al. Long-term outcome of deep brain stimulation in generalised dystonia: a series of 60 cases. 2014; 85: 1371-1376
  • 18 Gruber D, Trottenberg T, Kivi A. et al. Long-term effects of pallidal deep brain stimulation in tardive dystonia. Neurology 2009; 73: 53-58
  • 19 Schjerling L, Hjermind LE, Jespersen B. et al. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia. J Neurosurg 2013; 119: 1537-1545
  • 20 Oestrem JL, Racine CA, Glass GA. et al. Subthalamic nucleus deep brain stimulation in primary cervical dystonia. Neurology 2011; 76 (10) 870-878
  • 21 Khan FR, Henderson JM. Deep brain stimulation surgical techniques. Handb Clin Neurol 2013; 116: 27-37
  • 22 Chandran AS, Bynevelt M, Lind CRP. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg 2016; 124: 96-105
  • 23 Polanski WH, Martin KD, Engellandt K. et al. Accuracy of subthalamic nucleus targeting by T2, FLAIR and SWI-3-Tesla MRI confirmed by microelectrode recordings. Acta Neurochir 2015; 157 (Suppl. 03) 479-486
  • 24 Falowski SM, Ooi YC, Bakay RAE. Long-term evaluation of changes in operative technique and hardware-related complications with deep brain stimulation. Neuromodulation 2015; 18: 670-677
  • 25 Pezeshkian P, DeSalles AAF, Gorgulho A. et al. Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization. Neurosurgery 2011; 69: 1299-1306
  • 26 Butson CR, Cooper SE, Henderson JM. et al. Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage 2011; 54 (Suppl. 03) 2096-2104
  • 27 Schaltenbrand G, Wahren W. , eds. Atlas for stereotaxy of the human brain. 2nd ed. New York: Thieme; 1977
  • 28 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988
  • 29 Telford R, Vattoth S. MR anatomy of deep brain nuclei with special reference to specific diseases and deep brain stimulation localization. Neuroradiol J 2014; 27: 29-43
  • 30 Coenen VA, Allert N, Mädler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir 2011; discussion 1585 153: 1579-1585
  • 31 Krauss JK, Winter C, Kupsch A. Dystonie. In: Krauss JK, Volkmann J. , Hrsg. Tiefe Hirnstimulation. Heidelberg: Steinkopff; 2004: 289-315
  • 32 Coenen VA, Abdel-Rahman A, McMaster J. et al. Minimizing brain shift during functional neurosurgical procedures – a simple burr hole technique that can decrease CSF loss and intracranial air. Cent Eur Neurosurg 2011; 72: 181-185
  • 33 Moll CKE, Hamel W, Engel AK. Neurophysiologisches Monitoring in der funktionellen Neurochirurgie bei Bewegungsstörungen: intraoperative Mikroelektrodenableitungen. Neurophysiol Labor 2015; 37 (Suppl. 02) 102-129
  • 34 Pourfar M, Tang C, Lin T. et al. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J Neurosurg 2009; 110: 1278-1282
  • 35 Xiaowu H, Xiufeng J, Xiaoping Z. et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinson Rel Disord 2010; 16: 96-100