Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2017; 27(04): 211-217
DOI: 10.1055/s-0043-113046
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Konservative Therapie degenerativer Wirbelsäulenerkrankungen Teil I – Pathogenese, Klinische Symptomatik und Diagnostik

Conservative Treatment of Degenerative Lumbar Spine Diseases Part I – Pathogenesis, Clinical Signs And Diagnosis
Anke Steinmetz
1   Konservative Orthopädie und Muskuloskeletales Zentrum, Loreley-Kliniken, Oberwesel
,
Stefan Delank
2   Department für Orthopädie, Unfall- und Wiederherstellungschirurgie, Halle, Martin-Luther-Universität Halle-Wittenberg, Sachsen-Anhalt
› Author Affiliations
Further Information

Publication History

eingereicht 30 March 2017

angenommen 06 June 2017

Publication Date:
04 September 2017 (online)

Zusammenfassung

Degenerative Wirbelsäulenerkrankungen sind durch natürliche Abnutzungs- und Alterungsprozesse gekennzeichnet. Sie nehmen ihren Ursprung mit Abnahme des Flüssigkeitsgehalts der Bandscheiben ab dem 2. Lebensjahrzehnt, sind jedoch nicht automatisch mit klinischen Symptomen vergesellschaftet. Degenerative Wirbelsäulenerkrankungen können durch Schmerzen symptomatisch werden und zu neurologischen Ausfällen führen. Allerdings können bislang nur für weniger als 15% der Rückenschmerzen spezifische Ursachen beschrieben werden, in der Mehrheit der Fälle liegt ein nicht-spezifischer Kreuz- bzw. Rückenschmerz vor. Für die Chronifizierung des nicht-spezifischen Rückenschmerzes spielen insbesondere psychosoziale Faktoren eine große Rolle.

Ziel der Diagnostik muss die Abgrenzung spezifischer Rückenschmerzentitäten vom nicht-spezifischen Kreuzschmerz sein. Deren Basis besteht in einer ausführlichen Schmerzanamnese inklusive der Erhebung spezifischer Warnsignale (sogenannte red und yellow flags) und einer manualmedizinisch-neuroorthopädischen Untersuchung, welche ggf. durch radiologische Untersuchungen ergänzt wird. Bei Hinweisen auf psychosoziale Einflussfaktoren ist eine Multimodale Diagnostik unter Einbeziehung einer psychologischen Diagnostik anzustreben.

Abstract

Degenerative changes of the spine occur within the physiological aging process. They are initiated by the reduction of the disc fluid content in the second decade, but are not automatically associated with clinical symptoms. Degenerative spine disease can lead to pain and even neurological symptoms. However, in only 15% actually it’s possible to find specific causes for low back pain, the majority of low back pain presents as non-specific low back pain. Psychological risk factors can lead to the development of a chronic pain syndrome. The diagnostic aim in low back pain is to differentiate between specific and non-specific low back pain. The diagnostic procedure is based upon a detailed pain history including specific warn symptoms (red and yellow flags) and a clinical examination, which is completed by imaging techniques, if necessary. In case of existing psychosocial risk factors an interdisciplinary multimodal diagnostic setting including a psychological exploration is required.

 
  • Literatur

  • 1 Pockler-Schoniger C, Wollanka H. Pathophysiology, neurology and diagnostic radiology of degenerative diseases of the lumbar spine. Der Radiologe 2007; 47: 167-183 quiz 84–85
  • 2 Kalichman L, Hunter DJ. Lumbar facet joint osteoarthritis: a review. Seminars in arthritis and rheumatism 2007; 37: 69-80
  • 3 Varlotta GP, Lefkowitz TR, Schweitzer M. et al. The lumbar facet joint: a review of current knowledge: part 1: anatomy, biomechanics, and grading. Skeletal radiology 2011; 40: 13-23
  • 4 Fujiwara A, Tamai K, Yamato M. et al. The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 1999; 8: 396-401
  • 5 Vernon-Roberts B, Pirie CJ. Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatology and rehabilitation 1977; 16: 13-21
  • 6 Kalichman L, Guermazi A, Li L. et al. Association between age, sex, BMI and CT-evaluated spinal degeneration features. Journal of back and musculoskeletal rehabilitation 2009; 22: 189-195
  • 7 Kalichman L, Suri P, Guermazi A. et al. Facet orientation and tropism: associations with facet joint osteoarthritis and degeneratives. Spine 2009; 34: E579-E585
  • 8 Smorgick Y, Mirovsky Y, Fischgrund JS. et al. Radiographic predisposing factors for degenerative spondylolisthesis. Orthopedics 2014; 37: e260-e264
  • 9 Kalichman L, Li L, Hunter DJ. et al. Association between computed tomography-evaluated lumbar lordosis and features of spinal degeneration, evaluated in supine position. The spine journal: official journal of the North American Spine Society 2011; 11: 308-315
  • 10 Liu H, Li S, Zheng Z et al. Pelvic retroversion is the key protective mechanism of L4-5 degenerative spondylolisthesis. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2014
  • 11 Been E, Kalichman L. Lumbar lordosis. The spine journal: official journal of the North American Spine Society 2014; 14: 87-97
  • 12 Kalichman L, Hodges P, Li L. et al. Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2010; 19: 1136-1144
  • 13 Battie MC, Videman T, Kaprio J. et al. The Twin Spine Study: contributions to a changing view of disc degeneration. The spine journal: official journal of the North American Spine Society 2009; 9: 47-59
  • 14 Takatalo J, Karppinen J, Niinimaki J. et al. Prevalence of degenerative imaging findings in lumbar magnetic resonance imaging among young adults. Spine 2009; 34: 1716-1721
  • 15 Cheung KM, Karppinen J, Chan D. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 2009; 34: 934-940
  • 16 Suri P, Miyakoshi A, Hunter DJ. et al. Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population. BMC musculoskeletal disorders 2011; 12: 202
  • 17 Boden SD, Davis DO, Dina TS. et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. The Journal of bone and joint surgery American volume 1990; 72: 403-408
  • 18 Kalichman L, Cole R, Kim DH. et al. Spinal stenosis prevalence and association with symptoms: the Framingham Study. The spine journal: official journal of the North American Spine Society 2009; 9: 545-550
  • 19 Crisco JJ, Panjabi MM, Yamamoto I. et al. Euler stability of the human ligamentous lumbar spine. Part II: Experiment. Clin Biomech (Bristol, Avon) 1992; 7: 27-32
  • 20 Wilder DG, Pope MH, Frymoyer JW. The biomechanics of lumbar disc herniation and the effect of overload and instability. Journal of spinal disorders 1988; 1: 16-32
  • 21 Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 1992; 5: 383-389 discussion 97
  • 22 Panjabi MM, Krag MH, Chung TQ. Effects of disc injury on mechanical behavior of the human spine. Spine 1984; 9: 707-713
  • 23 Gay RE, Ilharreborde B, Zhao K. et al. The effect of loading rate and degeneration on neutral region motion in human cadaveric lumbar motion segments. Clin Biomech (Bristol, Avon) 2008; 23: 1-7
  • 24 Hasegawa K, Kitahara K, Hara T. et al. Evaluation of lumbar segmental instability in degenerative diseases by using a new intraoperative measurement system. Journal of neurosurgery Spine 2008; 8: 255-262
  • 25 Quint U, Wilke HJ. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2008; 17: 1705-1713
  • 26 Busscher I, van Dieen JH, van der Veen AJ. et al. The effects of creep and recovery on the in vitro biomechanical characteristics of human multi-level thoracolumbar spinal segments. Clin Biomech (Bristol, Avon) 2011; 26: 438-444
  • 27 Adams MA, Hutton WC, Stott JR. The resistance to flexion of the lumbar intervertebral joint. Spine 1980; 5: 245-253
  • 28 Panjabi MM, Goel VK, Takata K. Physiologic strains in the lumbar spinal ligaments. An in vitro biomechanical study 1981 Volvo Award in Biomechanics. Spine 1982; 7: 192-203
  • 29 Zhao F, Pollintine P, Hole BD. et al. Discogenic origins of spinal instability. Spine 2005; 30: 2621-2630
  • 30 Indahl A, Kaigle A, Reikeras O. et al. Electromyographic response of the porcine multifidus musculature after nerve stimulation. Spine 1995; 20: 2652-2658
  • 31 Indahl A, Kaigle AM, Reikeras O. et al. Interaction between the porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles. Spine 1997; 22: 2834-2840
  • 32 Solomonow M, Zhou BH, Harris M. et al. The ligamento-muscular stabilizing system of the spine. Spine 1998; 23: 2552-2562
  • 33 Solomonow M, Baratta RV, Zhou BH. et al. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 2003; 13: 381-396
  • 34 Stubbs M, Harris M, Solomonow M. et al. Ligamento-muscular protective reflex in the lumbar spine of the feline. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 1998; 8: 197-204
  • 35 Holm S, Indahl A, Solomonow M. Sensorimotor control of the spine. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 2002; 12: 219-234
  • 36 Cassisi JE, Robinson ME, O‘Conner P. et al. Trunk strength and lumbar paraspinal muscle activity during isometric exercise in chronic low-back pain patients and controls. Spine 1993; 18: 245-251
  • 37 Lee JH, Ooi Y, Nakamura K. Measurement of muscle strength of the trunk and the lower extremities in subjects with history of low back pain. Spine 1995; 20: 1994-1996
  • 38 Takemasa R, Yamamoto H, Tani T. Trunk muscle strength in and effect of trunk muscle exercises for patients with chronic low back pain. The differences in patients with and without organic lumbar lesions. Spine 1995; 20: 2522-2530
  • 39 Kankaanpaa M, Taimela S, Laaksonen D. et al. Back and hip extensor fatigability in chronic low back pain patients and controls. Archives of physical medicine and rehabilitation 1998; 79: 412-417
  • 40 Thomas JS, France CR, Sha D. et al. The influence of pain-related fear on peak muscle activity and force generation during maximal isometric trunk exertions. Spine 2008; 33: E342-E348
  • 41 Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine 1996; 21: 2640-2650
  • 42 Hodges PW, Cholewicki J, van Dieen JH. Spinal control: the rehabilitation of back pain. State of the art and science. Edinburgh: Churchill Livingstone. Elsevier; 2013
  • 43 Mooney V, Gulick J, Perlman M. et al. Relationships between myoelectric activity, strength, and MRI of lumbar extensor muscles in back pain patients and normal subjects. Journal of spinal disorders 1997; 10: 348-356
  • 44 Kaser L, Mannion AF, Rhyner A. et al. Active therapy for chronic low back pain: part 2. Effects on paraspinal muscle cross-sectional area, fiber type size, and distribution. Spine 2001; 26: 909-919
  • 45 Hides JA, Stokes MJ, Saide M. et al. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine (Phila Pa 1976) 1994; 19: 165-172
  • 46 Wallwork TL, Stanton WR, Freke M. et al. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man Ther 2009; 14: 496-500
  • 47 Mannion AF, Weber BR, Dvorak J. et al. Fibre type characteristics of the lumbar paraspinal muscles in normal healthy subjects and in patients with low back pain. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 1997; 15: 881-887
  • 48 Demoulin C, Crielaard JM, Vanderthommen M. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint, bone, spine: revue du rhumatisme 2007; 74: 9-13
  • 49 Jensen MC, Brant-Zawadzki MN, Obuchowski N. et al. Magnetic resonance imaging of the lumbar spine in people without back pain. The New England journal of medicine 1994; 331: 69-73
  • 50 Berg L, Hellum C, Gjertsen O. et al. Do more MRI findings imply worse disability or more intense low back pain? A cross-sectional study of candidates for lumbar disc prosthesis. Skeletal radiology 2013; 42: 1593-1602
  • 51 Endean A, Palmer KT, Coggon D. Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine 2011; 36: 160-169
  • 52 Chou D, Samartzis D, Bellabarba C. et al. Degenerative magnetic resonance imaging changes in patients with chronic low back pain: a systematic review. Spine 2011; 36 21 Suppl S43-S53
  • 53 Videman T, Battie MC, Gibbons LE. et al. Associations between back pain history and lumbar MRI findings. Spine 2003; 28: 582-588
  • 54 Suri P, Boyko EJ, Goldberg J. et al. Longitudinal associations between incident lumbar spine MRI findings and chronic low back pain or radicular symptoms: retrospective analysis of data from the longitudinal assessment of imaging and disability of the back (LAIDBACK). BMC musculoskeletal disorders 2014; 15: 152
  • 55 Waddell G. 1987 Volvo award in clinical sciences. A new clinical model for the treatment of low-back pain. Spine 1987; 12: 632-644
  • 56 Airaksinen O, Brox JI, Cedraschi C. et al. Chapter 4 European guidelines for the management of chronic nonspecific low back pain. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2006; 15 (Suppl. 02) S192-S300
  • 57 Deyo RA, Rainville J, Kent DL. What can the history and physical examination tell us about low back pain?. JAMA: the journal of the American Medical Association 1992; 268: 760-765
  • 58 Soler T, Calderon C. The prevalence of spondylolysis in the Spanish elite athlete. The American journal of sports medicine 2000; 28: 57-62
  • 59 Nationale Versorgungsleitlinie Kreuzschmerz [database online] 2010
  • 60 Hockaday JM, Whitty CW. Patterns of referred pain in the normal subject. Brain: a journal of neurology 1967; 90: 481-496
  • 61 Kellgren JH. On the distribution of pain arising from deep somatic structures with charts of segmental pain areas. Clin Sci 1939; 4: 35-46
  • 62 Feinstein B, Langton JN, Jameson RM. et al. Experiments on pain referred from deep somatic tissues. The Journal of bone and joint surgery American volume 1954; 36-A: 981-997
  • 63 AWMF. Nationale VersorgungsLeitlinie Nicht-Spezifischer Kreuzschmerz. 2017. 2017. Available at: http://www.awmf.org/uploads/tx_szleitlinien/nvl-007l_S3_Kreuzschmerz_2017-03. Accessed 23.04.2017
  • 64 Niemier K, Seidel W, Ritz W. et al. Introduction and evaluation of a multiprofessional assessment system for the differential diagnosis of chronic musculoskeletal pain syndromes. JOM 2005; 27: 71-80
  • 65 Niemier K, Ritz W, Seidel W. Funktionelle muskuloskeletale Diagnostik. Manuelle Medizin 2007; 45: 123-127