Rofo 2017; 189(11): 1047-1054
DOI: 10.1055/s-0043-112336
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

White Paper: Interventionelle MRT: Status Quo und Entwicklungspotenzial unter ökonomischen Perspektiven, Teil 2: Therapeutische und onkologische Anwendungen

Article in several languages: English | deutsch
Jörg Barkhausen
1   Department of Radiology and Nuclear Medicine, University Hospital Schleswig Holstein Luebeck Campus, Germany
,
Thomas Kahn
2   Clinic and Policlinic for Diagnostic and Interventional Radiology, Leipzig, Germany
,
Gabriele A. Krombach
3   Department of Radiology, University Hospital Giessen, Justus Liebig University, Giessen, Germany
,
Christiane K. Kuhl
4   Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Germany
,
Joachim Lotz
5   Institute for Diagnostic and Interventional Radiology, Georg-August-University Goettingen, Germany
,
David Maintz
6   Department of Radiology, University Hospital of Cologne, Cologne, Germany
,
Jens Ricke
7   Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany
,
Stefan O. Schönberg
8   Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
,
Thomas J. Vogl
9   Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
Frank K. Wacker
10   Department for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
,
German Association of Chairmen in Academic Radiology (KLR)
› Author Affiliations
Further Information

Publication History

15 February 2017

08 May 2017

Publication Date:
01 September 2017 (online)

Zusammenfassung

Hintergrund Die interventionelle MRT mit den Vorteilen des hohen Weichteilkontrasts und der Temperatursensitivität sowie der freien Wahl der Schichtebene bietet Eigenschaften, die auch für die Behandlung von Patienten mit benignen Tumoren und mit Malignomen von besonderer Bedeutung sind.

Methoden Wir beschreiben die klinisch etablierten Verfahren der interventionellen MRT und die Entwicklungsperspektiven zur Behandlung von Patienten mit Malignomen und den Einsatz des HIFU für die Behandlung von benignen Tumoren wie Uterusmyomen.

Ergebnisse Technische Lösungen sind mittlerweile für alle prozeduralen Abläufe einschließlich der Bildsteuerung, und Instrumentensicherheit und Patientenüberwachung entwickelt worden. Dies hat dazu geführt, dass die Anwendungsfelder in der klinischen Routine erweitert wurden. Die interventionelle MRT spielt nun für die Behandlung onkologischer Patienten eine zunehmend wichtige Rolle. Tumore sind aufgrund des hohen Weichteilkontrastes im Vergleich zu anderen Modalitäten besser erkennbar und punktierbar. Ablationen können hierdurch gewebeschonend durchgeführt werden. Zudem ermöglicht der Einsatz temperatursensitiver Messmethoden die gezielte Einhaltung eines Sicherheitsabstandes (A-0 Ablation).

Schlussfolgerung Die interventionelle MRT ist im Rahmen der Biopsie und der ablativen Tumorbehandlung bereits in der klinischen Routine etabliert. Die genaue Kostenkalkulation und Gegenüberstellung zur Erlössituation zeigt, dass dieses Verfahren in seiner Gesamtheit kostendeckend durchgeführt werden kann. Aufgrund dieser ökonomischen Voraussetzungen und der Möglichkeit der Senkung von Mortalität und Morbidität für Patienten mit benignen und malignen Tumoren ist eine weitere Ausweitung des Einsatzes der interventionellen MRT in Zukunft zu erwarten.

Kernaussagen

  • Insbesondere für die Behandlung onkologischer Patienten ist die interventionelle MRT durch die Möglichkeit Tumorgrenzen exakt zu bestimmen und die Ablationsgröße aufgrund der MR-Temperaturquantifizierung zu visualisieren und zu steuern, anderen Verfahren hinsichtlich der minimalen Invasivität und Gewebeschonung überlegen.

  • Aufgrund der besseren Darstellung der Ziele sowie der Effekte einer Ablation im Gewebe kann die interventionelle MRT für viele Indikationen die mit diesen Eingriffen verbundene Mortalität und Morbidität senken.

  • Die komplexe Gegenüberstellung von Kosten und Erlösen zeigt, dass diese Anwendung kostendeckend durchgeführt werden kann und lässt für die Zukunft einen breiten Einsatz erwarten.

Zitierweise

  • Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology. Fortschr Röntgenstr 2017; 189: 1047 – 1054

 
  • References

  • 1 Barkhausen J, Kahn T, Krombach GA. et al. White paper: Interventionelle MRT: Status Quo und Entwicklungspotenzial unter ökonomischen Perspektiven, Teil 1: generelle Anwendungen. Fortschr Röntgenstr 2017; 189: 611-623 doi: 10.1055/s-0043-110011
  • 2 Weiss CR, Nour SG, Lewin JS. MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging 2008; 27: 311-325
  • 3 Siegmann-Luz KC, Bahrs SD, Preibsch H. et al. Management of breast lesions detectable only on MRI. Fortschr Röntgenstr 2014; 186: 30-36
  • 4 Fischbach F, Bunke J, Thormann M. et al. MR-guided freehand biopsy of liver lesions with fast continuous imaging using a 1.0-T open MRI scanner: experience in 50 patients. Cardiovasc Intervent Radiol 2011; 34: 188-192
  • 5 Schwab SA, Kuefner MA, Adamietz B. et al. MRI-guided core biopsy of the prostate in the supine position – introduction of a simplified technique using large-bore magnet systems. Eur Radiol 2013; 23: 1415-1419
  • 6 Kuhn JP, Langner S, Hegenscheid K. et al. Magnetic resonance-guided upper abdominal biopsies in a high-field wide-bore 3-T MRI system: feasibility, handling, and needle artefacts. Eur Radiol 2010; 20: 2414-2421
  • 7 Zangos S, Eichler K, Wetter A. et al. MR-guided biopsies of lesions in the retroperitoneal space: technique and results. Eur Radiol 2006; 16: 307-312
  • 8 Stattaus J, Maderwald S, Baba HA. et al. MR-guided liver biopsy within a short, wide-bore 1.5 Tesla MR system. Eur Radiol 2008; 18: 2865-2873
  • 9 Xu D, Herzka DA, Gilson WD. et al. MR-guided sclerotherapy of low-flow vascular malformations using T2 -weighted interrupted bSSFP (T2 W-iSSFP): comparison of pulse sequences for visualization and needle guidance. J Magn Reson Imaging 2015; 41: 525-535
  • 10 Boll DT, Merkle EM, Lewin JS. MR-guided percutaneous sclerotherapy of low-flow vascular malformations in the head and neck. Magn Reson Imaging Clin N Am 2005; 13: 595-600
  • 11 Fritz J, Tzaribachev N, Thomas C. et al. Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol 2011; 21: 1050-1057
  • 12 Streitparth F, Walter T, Wonneberger U. et al. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 2010; 20: 395-403
  • 13 Fritz J, Thomas C, Clasen S. et al. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. Am J Roentgenol 2009; 192: W161-W167
  • 14 Wacker FK, Faiss S, Reither K. et al. MR imaging-guided biliary drainage in an open low-field system: first clinical experiences. Fortschr Röntgenstr 2000; 172: 744-747
  • 15 Porsch M, Wendler JJ, Fischbach F. et al. Placement of percutaneous nephrostomy by open magnetic resonance imaging: clinical results and current status in urology. Urologe A 2012; 51: 1722-1727
  • 16 Rempp H, Waibel L, Hoffmann R. et al. MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: clinical results of 213 treated liver lesions. Eur Radiol 2012; 22: 1972-1982
  • 17 Ritz JP, Lehmann KS, Zurbuchen U. et al. Improving laser-induced thermotherapy of liver metastases--effects of arterial microembolization and complete blood flow occlusion. Eur J Surg Oncol 2007; 33: 608-615
  • 18 Zangos S, Melzer A, Eichler K. et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 2011; 259: 903-910
  • 19 Christoforou EG, Seimenis I, Andreou E. et al. A novel, general-purpose, MR-compatible, manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance. Int J Med Robot 2014; 10: 22-34
  • 20 Schell B, Eichler K, Mack MG. et al. Robot-assisted biopsies in a high-field MRI system – first clinical results. Fortwschr Röntgenstr 2012; 184: 42-47
  • 21 Wacker FK, Vogt S, Khamene A. et al. An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 2006; 238: 497-504
  • 22 Fritz J, Thainual P, Ungi T. et al. Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 2013; 48: 464-470
  • 23 Fischer GS, Deguet A, Csoma C. et al. MRI image overlay: application to arthrography needle insertion. Comput Aided Surg 2007; 12: 2-14
  • 24 Boss A, Rempp H, Martirosian P. et al. Wide-bore 1.5 Tesla MR imagers for guidance and monitoring of radiofrequency ablation of renal cell carcinoma: initial experience on feasibility. Eur Radiol 2008; 18: 1449-1455
  • 25 Zangos S, Vetter T, Huebner F. et al. MR-guided biopsies with a newly designed cordless coil in an open low-field system: initial findings. Eur Radiol 2006; 16: 2044-2050
  • 26 Stattaus J, Maderwald S, Forsting M. et al. MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-Tesla scanner: feasibility and initial results. J Magn Reson Imaging 2008; 27: 1181-1187
  • 27 Rothgang E, Gilson WD, Wacker F. et al. Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility. J Magn Reson Imaging 2013; 37: 1202-1212
  • 28 Meyer BC, Brost A, Kraitchman DL. et al. Percutaneous punctures with MR imaging guidance: comparison between MR imaging-enhanced fluoroscopic guidance and real-time MR Imaging guidance. Radiology 2013; 266: 912-919
  • 29 Vogl TJ, Farshid P, Naguib NN. et al. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol Med 2014; 119: 451-461
  • 30 Vogl TJ, Farshid P, Naguib NN. et al. Thermal ablation therapies in patients with breast cancer liver metastases: a review. Eur Radiol 2013; 23: 797-804
  • 31 Vogl TJ, Straub R, Zangos S. et al. MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data. Int J Hyperthermia 2004; 20: 713-724
  • 32 Vogl TJ, Straub R, Lehnert T. et al. Percutaneous thermoablation of pulmonary metastases. Experience with the application of laser-induced thermotherapy (LITT) and radiofrequency ablation (RFA), and a literature review. Fortschr Röntgenstr 2004; 176: 1658-1666
  • 33 Morikawa S, Naka S, Murakami K. et al. Preliminary clinical experiences of a motorized manipulator for magnetic resonance image-guided microwave coagulation therapy of liver tumors. Am J Surg 2009; 198: 340-347
  • 34 Morrison PR, Silverman SG, Tuncali K. et al. MRI-guided cryotherapy. J Magn Reson Imaging 2008; 27: 410-420
  • 35 Morikawa S, Naka s, Murayama H. et al. MRI-Guided Microwave Ablation. Medical Radiology 2012; 389-402
  • 36 Kickhefel A, Roland J, Weiss C. et al. Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Phys Med 2010; 26: 192-201
  • 37 Bazrafshan B, Hubner F, Farshid P. et al. Magnetic resonance temperature imaging of laser-induced thermotherapy: assessment of fast sequences in ex vivo porcine liver. Future Oncol 2013; 9: 1039-1050
  • 38 Kickhefel A, Rosenberg C, Roland J. et al. A pilot study for clinical feasibility of the near-harmonic 2D referenceless PRFS thermometry in liver under free breathing using MR-guided LITT ablation data. Int J Hyperthermia 2012; 28: 250-266
  • 39 Valerio M, Ahmed HU, Emberton M. et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 2014; 66: 732-751
  • 40 Raz O, Haider MA, Davidson SR. et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 2010; 58: 173-177
  • 41 Lindner U, Ghai S, Spensieri P. et al. Focal magnetic resonance guided focused ultrasound for prostate cancer: Initial North American experience. Can Urol Assoc J 2012; 6: E283-E286
  • 42 Napoli A, Anzidei M, De NC. et al. Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. Eur Urol 2013; 63: 395-398
  • 43 Chopra R, Colquhoun A, Burtnyk M. et al. MR imaging-controlled transurethral ultrasound therapy for conformal treatment of prostate tissue: initial feasibility in humans. Radiology 2012; 265: 303-313
  • 44 Gangi A, Tsoumakidou G, Abdelli O. et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol 2012; 22: 1829-1835
  • 45 Oto A, Sethi I, Karczmar G. et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 2013; 267: 932-940
  • 46 Ghai S, Trachtenberg J. In-bore MRI interventions: current status and future applications. Curr Opin Urol 2015; 25: 205-211
  • 47 Woodrum DA, Kawashima A, Karnes RJ. et al. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology 2013; 82: 870-875
  • 48 Bomers JG, Yakar D, Overduin CG. et al. MR imaging-guided focal cryoablation in patients with recurrent prostate cancer. Radiology 2013; 268: 451-460
  • 49 Cepek J, Lindner U, Ghai S. et al. Mechatronic system for in-bore MRI-guided insertion of needles to the prostate: An in vivo needle guidance accuracy study. J Magn Reson Imaging 2015; 42: 48-55 doi: 10.1002/jmri.24742
  • 50 Phenix CP, Togtema M, Pichardo S. et al. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 2014; 17: 136-153
  • 51 Ruhnke H, Eckey T, Bohlmann MK. et al. MR-guided HIFU treatment of symptomatic uterine fibroids using novel feedback-regulated volumetric ablation: effectiveness and clinical practice. Fortschr Röntgenstr 2013; 185: 983-991
  • 52 Kim YS, Trillaud H, Rhim H. et al. MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids. Radiology 2012; 265: 627-637
  • 53 Trumm CG, Stahl R, Clevert DA. et al. Magnetic resonance imaging-guided focused ultrasound treatment of symptomatic uterine fibroids: impact of technology advancement on ablation volumes in 115 patients. Invest Radiol 2013; 48: 359-365
  • 54 Gorny KR, Woodrum DA, Brown DL. et al. Magnetic resonance-guided focused ultrasound of uterine leiomyomas: review of a 12-month outcome of 130 clinical patients. J Vasc Interv Radiol 2011; 22: 857-864
  • 55 Geiger D, Napoli A, Conchiglia A. et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am 2014; 96: 743-751
  • 56 Malietzis G, Monzon L, Hand J. et al. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013; 86: 20130044
  • 57 Huisman M, Ter HG, Napoli A. et al. International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions. Int J Hyperthermia 2015; 1-9