Gefäßmedizin Scan - Zeitschrift für Angiologie, Gefäßchirurgie, diagnostische und interventionelle Radiologie 2017; 04(02): 129-143
DOI: 10.1055/s-0043-111765
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Rolle der zerebralen Bildgebung für die Therapieentscheidung zur Thrombektomie

Daniel Kaiser
,
Johannes C. Gerber
,
Volker Puetz
Further Information

Publication History

Publication Date:
19 July 2017 (online)

Der ischämische Schlaganfall, bedingt durch Gefäßverschluss und konsekutive zerebrale Minderperfusion, ist eine potenziell reversible Erkrankung. Unbehandelt kann er jedoch innerhalb kürzester Zeit zu Behinderung oder Tod führen. Dieser Beitrag beschreibt, wie die Behandlung bei Schlaganfall in den letzten 2 Jahrzehnten mit dem Fortschritt in der bildgebenden Diagnostik zur sicheren und hocheffektiven Kausaltherapie weiterentwickelt wurde.

Kernaussagen
  • Sechs aktuelle randomisierte kontrollierte Studien haben einen signifikanten Behandlungseffekt der Thrombektomie auf den klinischen Verlauf bei Patienten mit akutem Schlaganfall aufgrund eines proximalen Gefäßverschlusses im vorderen Stromgebiet gezeigt.

  • Alle Studien bestätigten die entscheidende Rolle einer prätherapeutischen Bildgebung in der Auswahl der Patienten, die von einer endovaskulären Therapie profitieren können. Dabei wurden jedoch unterschiedliche bildgebungsbasierte Ansätze mit Darstellung des behandelbaren Gefäßverschlusses, des Infarktkerns, der arteriellen Kollateralversorgung oder der Penumbra gewählt.

  • Auf Basis der aktuellen Studienlage und Leitlinien [13] wird zur Indikationsstellung für die Thrombektomie empfohlen, dass Patienten mit einem akuten Schlaganfall unverzüglich eine nicht invasive zerebrale Bildgebung erhalten.

  • Bei ischämischer Schlaganfallgenese gilt die Empfehlung, unverzüglich eine Gefäßdarstellung (CTA, MRA [Magnetresonanzangiografie]) durchzuführen, um Patienten für eine Thrombektomie auszuwählen.

  • Die Thrombektomie wird für Patienten mit intrakraniellem Gefäßverschluss im vorderen Stromgebiet (A. carotis interna, M1; eingeschränkt für M2) und bildgebenden Zeichen eines kleinen Infarkts (z. B. ASPECTS > 5) in einem Zeitfenster von bis zu 6 h nach Symptombeginn empfohlen.

  • Patienten im erweiterten Zeitfenster (mehr als 6 h) oder mit größerem Infarkt (z. B. ASPECTS ≤ 5) sind nicht grundsätzlich von einer Thrombektomie auszuschließen. Weitere Bildgebung (Perfusion, Kollateralen) sollte herangezogen werden, um Patienten auszuwählen, deren Hirngewebe noch gerettet werden kann.

  • Patienten mit einem akuten Basilarisverschluss sollten primär mit einer Thrombektomie behandelt oder in randomisierte Studien eingeschlossen werden.

 
  • Literatur

  • 1 Berkhemer OA, Fransen PSS, Beumer D. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372: 11-20
  • 2 Goyal M, Demchuk AM, Menon BK. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Eng J Med 2015; 372: 1019-1030
  • 3 Campbell BCV, Mitchell PJ, Kleinig TJ. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372: 1009-1018
  • 4 Saver JL, Goyal M, Bonafe A. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372: 2285-2295
  • 5 Jovin TG, Chamorro A, Cobo E. et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015; 372: 1-11
  • 6 Bracard S, Ducrocq X, Mas JL. et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol 2016; 15: 1138-1147
  • 7 Grotta JC, Hacke W. Stroke neurologist’s perspective on the new endovascular trials. Stroke 2015; 46: 1447-1452
  • 8 Goyal M, Menon BK. Variability of results of recent acute endovascular trials: a statistical analysis. J Neurointerv Surg 2016; 8: 875-877
  • 9 Broderick JP, Palesch YY, Demchuk AM. et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 2013; 368: 893-903
  • 10 Kidwell CS, Jahan R, Gornbein J. et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 2013; 368: 914-923
  • 11 Ciccone A, Valvassori L, Nichelatti M. et al. Endovascular treatment for acute ischemic stroke. N Engl J Med 2013; 368: 904-913
  • 12 Warach SJ, Luby M, Albers GW. et al. Acute stroke imaging research roadmap III imaging selection and outcomes in acute stroke reperfusion clinical trials: consensus recommendations and further research priorities. Stroke 2016; 47: 1389-1398
  • 13 Ringleb PA, Hamann GF, Röther J. et al. Akuttherapie des ischämischen Schlaganfalls – rekanalisierende Therapie: Ergänzung 2015. Akt Neurol 2016; 43: 82-91
  • 14 Powers WJ, Derdeyn CP, Biller J. et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare pProfessionals from the American. Stroke 2015; 46: 3020-3035
  • 15 Puetz V, Barlinn K, Bodechtel U. et al. Imaging-based selection for revascularization in acute ischemic stroke. Curr Opin Neurol 2016; 29: 20-29
  • 16 Menon BK, Campbell BCV, Levi C. et al. Role of imaging in current acute ischemic stroke workflow for endovascular therapy. Stroke 2015; 46: 1453-1461
  • 17 Saver JL. Time is brain – quantified. Stroke 2006; 37: 263-266
  • 18 Menon BK, Sajobi TT, Zhang Y. et al. Analysis of workflow and time to treatment on thrombectomy outcome in the endovascular treatment for small core and proximal occlusion ischemic stroke (ESCAPE) randomized, controlled trial. Circulation 2016; 133: 2279-2286
  • 19 Khatri P, Yeatts SD, Mazighi M. et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: an analysis of data from the Interventional Management of Stroke (IMS III) phase 3 trial. Lancet Neurol 2014; 13: 567-574
  • 20 Goyal M, Fargen KM, Menon BK. Acute stroke, Bayes’ theorem and the art and science of emergency decision-making. J Neurointerv Surg 2013; 6: 2-6
  • 21 von Kummer R, Meyding-Lamade U, Forsting M. et al. Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR 1994; 15: 9-18
  • 22 Jovin TG, Yonas H, Gebel JM. et al. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 2003; 34: 2426-2433
  • 23 von Kummer R, Bourquain H, Bastianello S. et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 2001; 219: 95-100
  • 24 Puetz V, Dzialowski I, Hill MD. et al. The Alberta stroke program early CT score in clinical practice: What have we learned?. Int J Stroke 2009; 4: 354-364
  • 25 Barber PA, Demchuk AM, Zhang J. et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000; 355: 1670-1674
  • 26 Hill MD, Rowley HA, Adler F. et al. Selection of acute ischemic stroke patients for intra-arterial thrombolysis with pro-urokinase by using ASPECTS. Stroke 2003; 34: 1925-1931
  • 27 Hill MD, Demchuk AM, Goyal M. et al. Alberta stroke program early computed tomography score to select patients for endovascular treatment interventional management of stroke (IMS)-III trial. Stroke 2014; 45: 444-449
  • 28 Yoo AJ, Zaidat OO, Chaudhry ZA. et al. Impact of pretreatment noncontrast CT Alberta stroke program early CT score on clinical outcome after intra-arterial stroke therapy. Stroke 2014; 45: 746-751
  • 29 Goyal M, Menon BK, van Zwam WH. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387: 1723-1731
  • 30 Wolpert SM, Bruckmann H, Greenlee R. et al. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR 1990; 14: 3-13
  • 31 Barber PA, Demchuk AM, Hill MD. et al. The probability of middle cerebral artery MRA flow signal abnormality with quantified CT ischaemic change: targets for future therapeutic studies. J Neurol Neurosurg Psychiatry 2004; 75: 1426-1430
  • 32 Mocco J, Zaidat OO, von Kummer R. et al. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. Stroke 2016; 47: 2331-2338
  • 33 Bash S, Villablanca JP, Jahan R. et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR 2005; 26: 1012-1021
  • 34 Demchuk AM, Goyal M, Yeatts SD. et al. Recanalization and clinical outcome of occlusion sites at baseline CT angiography in the Interventional Management of Stroke III trial. Radiology 2014; 273: 202-210
  • 35 Almekhlafi M, Menon B, Goyal M. Lessons learnt from recent endovascular stroke trials: finding a way to move forward. Exp Rev Cardiovasc Ther 2014; 12: 429-436
  • 36 Appireddy RMR, Demchuk AM, Goyal M. et al. Endovascular therapy for ischemic stroke. J Clin Neurol 2015; 11: 1-8
  • 37 Bhatia R, Bal SS, Shobha N. et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke 2011; 42: 1575-1580
  • 38 Coutts SB, Lev MH, Eliasziw M. et al. ASPECTS on CTA source images versus unenhanced CT: added value in predicting final infarct extent and clinical outcome. Stroke 2004; 35 : 2472-2476
  • 39 Pulli B, Schaefer PW, Hakimelahi R. et al. Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 2012; 262: 593-604
  • 40 Liebeskind DS. Collateral circulation. Stroke 2003; 34: 2279-2284
  • 41 Leng X, Fang H, Leung TWH. et al. Impact of collaterals on the efficacy and safety of endovascular treatment in acute ischaemic stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2015; 87: 1-8
  • 42 McVerry F, Liebeskind DS, Muir KW. Systematic review of methods for assessing leptomeningeal collateral flow. AJNR 2012; 33: 576-582
  • 43 Berkhemer OA, Jansen IGH, Beumer D. et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 2016; 47: 768-776
  • 44 van Den Wijngaard IR, Holswilder G, Wermer MJH. et al. Assessment of collateral status by dynamic CT angiography in acute mca stroke: timing of acquisition and relationship with final infarct volume. AJNR 2016; 37: 1231-1236
  • 45 Frölich AMJ, Wolff SL, Psychogios MN. et al. Time-resolved assessment of collateral flow using 4D CT angiography in large-vessel occlusion stroke. Eur Radiol 2014; 24: 390-396
  • 46 Menon BK, D’esterre CD, Qazi EM. et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke 1. Radiology 2015; 275: 510-520
  • 47 Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 1981; 12: 723-725
  • 48 Bivard A, Levi C, Spratt N. et al. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 2013; 267: 543-550
  • 49 Campbell BCV, Yassi N, Ma H. et al. Imaging selection in ischemic stroke: feasibility of automated CT-perfusion analysis. Int J Stroke 2015; 10: 51-54
  • 50 Dani KA, Thomas RGR, Chappell FM. et al. Systematic review of perfusion imaging with computed tomography and magnetic resonance in acute ischemic stroke: heterogeneity of acquisition and stroke imaging study. Stroke 2012; 43: 563-566
  • 51 Heit JJ, Wintermark M. Perfusion computed tomography for the evaluation of acute ischemic stroke. Stroke 2016; 47: 1153-1158
  • 52 Campbell BCV, Christensen S, Levi CR. et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 2011; 42: 3435-3440
  • 53 Austein F, Riedel C, Kerby T. et al. Comparison of perfusion CT software to predict the final infarct volume after thrombectomy. Stroke 2016; 47: 2311-2317
  • 54 Olivot J-M, Mlynash M, Thijs VN. et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475
  • 55 Kamalian S, Kamalian S, Maas MB. et al. CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 2011; 42: 1923-1928
  • 56 Campbell BCV, Christensen S, Levi CR. et al. Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 2012; 43: 2648-2653
  • 57 Borst J, Berkhemer OA, Roos YB. et al. Value of computed tomographic perfusion-based patient selection for intra-arterial acute ischemic stroke treatment. Stroke 2015; 46: 3375-3382
  • 58 Muir KW, Buchan A, von Kummer R. et al. Imaging of acute stroke. Lancet Neurol 2006; 5: 755-768
  • 59 Nael K, Khan R, Choudhary G. et al. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries. Stroke 2014; 45: 1985-1991
  • 60 Wintermark M, Fiehler J, Kudo K. et al. International survey of acute stroke imaging capabilities. We need you!. Stroke 2013; 44: 2091
  • 61 Lansberg MG, Straka M, Kemp S. et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 2012; 11: 860-867
  • 62 Lansberg MG, Cereda CW, Mlynash M. et al. Response to endovascular reperfusion is not time-dependent in patients with salvageable tissue. Neurology 2015; 85: 708-714
  • 63 Wouters A, Lemmens R, Christensen S. et al. Magnetic resonance imaging-based endovascular versus medical stroke treatment for symptom onset up to 12 h. Int J Stroke 2016; 11: 127-133
  • 64 Jovin TG, Nogueira RG. DAWN Investigators. DAWN in full daylight (DWI or CTP assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention). Eur Stroke J 2017; 2: 494
  • 65 Gascou G, Lobotesis K, Machi P. et al. Stent retrievers in acute ischemic stroke: complications and failures during the perioperative period. AJNR 2014; 35: 734-740
  • 66 Mokin M, Fargen KM, Primiani CT. et al. Vessel perforation during stent retriever thrombectomy for acute ischemic stroke: technical details and clinical outcomes. J Neurointerv Surg 2016; DOI: 10.1136/neurintsurg-2016-012707.
  • 67 Chen H, Liu N, Li Y. et al. Mismatch of low perfusion and high permeability predicts hemorrhagic transformation region in acute ischemic stroke patients treated with intra-arterial thrombolysis. Sci Rep 2016; 6: 27950
  • 68 Coutinho JM, Liebeskind DS, Slater LA. et al. Mechanical thrombectomy for isolated M2 occlusions: a post hoc analysis of the STAR, SWIFT, and SWIFT PRIME studies. AJNR 2016; 37: 667-672
  • 69 Singer OC, Berkefeld J, Nolte CH. et al. Mechanical recanalization in basilar artery occlusion: the ENDOSTROKE study. Akt Neurol 2015; 77: 415-424
  • 70 van der Hoeven EJRJ, Schonewille WJ, Vos JA. et al. The Basilar Artery International Cooperation Study (BASICS): study protocol for a randomised controlled trial. Trials 2013; 14: 200