Klin Monbl Augenheilkd 2017; 234(06): 758-762
DOI: 10.1055/s-0043-109024
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Keratin, Kollagen oder doch Spendergewebe – wo liegt die Zukunft in der Entwicklung neuer Biomaterialien zur Hornhautrekonstruktion?

Biomaterials or Donor Tissue – What is the Future of Tissue Engenieering for Cornea Reconstruction?
Björn O. Bachmann
1   Zentrum für Augenheilkunde, Universitätsklinikum Köln
,
Stefan Schrader
2   Augenklinik, Universitätsklinikum Düsseldorf
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 14. März 2017

akzeptiert 09. April 2017

Publikationsdatum:
06. Juni 2017 (online)

Zusammenfassung

Für den Ersatz von Hornhautgewebe werden seit Langem standardmäßig Hornhauttransplantate bzw. Amnionmembran verwendet. Da es sich hierbei um biologisches Gewebe handelt, besteht nur eine eingeschränkte Standardisierung, was die Herstellung, Beschaffenheit und die Eigenschaften nach Transplantation betrifft. Darüber hinaus gibt es ein Risiko der Krankheitsübertragung vom Spender und die Verfügbarkeit sowohl von menschlichen Hornhäuten als auch von Amnionmembran ist in vielen Regionen der Erde ungenügend. Aus diesem Grund werden seit vielen Jahren alternative Biomaterialien für den Hornhautersatz beforscht. Unter den natürlichen Biomaterialien bieten Materialien auf Kollagen- oder Keratinbasis Eigenschaften, die sie zu aussichtsreichen Kandidaten für den Hornhautstromaersatz machen. Aktuell bestehen aber noch viele ungelöste Probleme, insbesondere was die Degradation nach Implantation und die Nahtfestigkeit der Materialien angeht. Erste klinische Untersuchungen mit unterschiedlichen Biomaterialien auf Kollagenbasis belegen jedoch ihre insgesamt recht gute Biokompatibilität hinsichtlich ihrer Integrationsfähigkeit bzw. hinsichtlich ihrer geringen Immunogenität. Aktuell gibt es kein Biomaterial, das den Anforderungen in jeder Situation gerecht wird. Es ist zu vermuten, dass zukünftig unterschiedliche Biomaterialen zur Verfügung stehen, die in Abhängigkeit von der zugrunde liegenden Hornhauterkrankung unterschiedliche Funktionen erfüllen und so eine patienten- und krankheitsindividuelle Versorgung möglich machen.

Abstract

For the replacement of corneal tissue, corneal grafts or amniotic membrane are still used as a standard material. Since this is biological tissue, there is only a limited standardization regarding preparation, tissue properties and behaviour after transplantation. In addition, there is a risk of disease transmission, and the availability of both human corneas and amniotic membrane is insufficient in many regions of the world, which is why alternative biomaterials have been explored for many years now. Among the natural biomaterials, materials based on collagen or keratin provide characteristics that make them good candidates for corneal tissue replacement. However, there are still many unsolved problems, particularly regarding the degradation after implantation and the seam strength of the materials. Initial clinical studies with different biomaterials based on collagen prove their good biocompatibility to integrate and their low immunogenicity. Currently, there is no biomaterial that meets the requirements in every situation. It can be assumed that different biomaterials will be available in the future, which, depending on the underlying corneal disease, will fulfill different functions and thus make a patient- and disease-specific care possible.

 
  • Literatur

  • 1 Stoppel WL, Ghezzi CE, McNamara SL. et al. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43: 657-680
  • 2 Hallab NJ. Hypersensitivity to implant debris. Degrad Implant Mater 2012; 2012: 329-345
  • 3 Taylor MS, Daniels AU, Andriano KP. et al. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 1994; 5: 151-157
  • 4 Ruberti JW, Roy AS, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng 2011; 13: 269-295
  • 5 Feng Y, Borrelli M, Reichl S. et al. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 2014; 39: 541-552
  • 6 Hicks CR, Crawford GJ, Dart JK. et al. AlphaCor: Clinical outcomes. Cornea 2006; 25: 1034-1042
  • 7 Tan XW, Hartman L, Tan KP. et al. In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation. J Mater Sci Mater Med 2013; 24: 967-977
  • 8 Alio JL, Abdelghany AA, Abu-Mustafa SK. et al. A new epidescemetic keratoprosthesis: pilot investigation and proof of concept of a new alternative solution for corneal blindness. Br J Ophthalmol 2015; 99: 1483-1487
  • 9 Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. Biomaterials 2011; 32: 3375-3386
  • 10 Borrelli M, Reichl S, Feng Y. et al. In vitro characterization and ex vivo surgical evaluation of human hair keratin films in ocular surface reconstruction after sterilization processing. J Mater Sci Mater Med 2013; 24: 221-230
  • 11 Feng Y, Borrelli M, Meyer-Ter-Vehn T. et al. Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr Eye Res 2014; 39: 561-570
  • 12 Borrelli M, Joepen N, Reichl S. et al. Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials 2015; 42: 112-120
  • 13 Fagerholm P, Lagali NS, Carlsson DJ. et al. Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci 2009; 2: 162-164
  • 14 Merrett K, Fagerholm P, McLaughlin CR. et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci 2008; 49: 3887-3894
  • 15 Staatz WD, Fok KF, Zutter MM. et al. Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. J Biol Chem 1991; 266: 7363-7367
  • 16 Gullberg D, Terracio L, Borg TK. et al. Identification of integrin-like matrix receptors with affinity for interstitial collagens. J Biol Chem 1989; 264: 12686-12694
  • 17 Gullberg D, Turner DC, Borg TK. et al. Different beta 1-integrin collagen receptors on rat hepatocytes and cardiac fibroblasts. Exp Cell Res 1990; 190: 254-264
  • 18 Levis HJ, Brown RA, Daniels JT. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 2010; 31: 7726-7737
  • 19 Liu W, Deng C, McLaughlin CR. et al. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 2009; 30: 1551-1559
  • 20 McLaughlin CR, Acosta MC, Luna C. et al. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials 2010; 31: 2770-2778
  • 21 Lagali NS, Griffith M, Shinozaki N. et al. Innervation of tissue-engineered corneal implants in a porcine model: a 1-year in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 2007; 48: 3537-3544
  • 22 Petsch C, Schlötzer-Schrehardt U, Meyer-Blazejewska E. et al. Novel collagen membranes for the reconstruction of the corneal surface. Tissue Eng Part A 2014; 20: 2378-2389
  • 23 Levis HJ, Menzel-Severing J, Drake RA. et al. Plastic compressed collagen constructs for ocular cell culture and transplantation: a new and improved technique of confined fluid loss. Curr Eye Res 2013; 38: 41-52
  • 24 Drechsler CC, Kunze A, Kureshi A. et al. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen. J Tissue Eng Regen Med 2017; 11: 896-904
  • 25 Dunn MW, Nishihara T, Stenzel KH. et al. Collagen-derived membrane: corneal implantation. Science 1967; 157: 1329-1330
  • 26 Payrau P, Offret G, Faure JP. et al. [Experimental trial of the use of collagen in ophthalmology]. Arch Ophtalmol Rev Gen Ophtalmol 1963; 23: 129-142
  • 27 Duan X, McLaughlin C, Griffith M. et al. Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 2007; 28: 78-88
  • 28 Petsch C, Schlötzer-Schrehardt U, Frey M. et al. Optimized culturing conditions for limbal epithelial cells cultivated on semi-synthetic collagen matrices. In: Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting Abstracts. 2013
  • 29 Torbet J, Malbouyres M, Builles N. et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials 2007; 28: 4268-4276
  • 30 Deng C, Li F, Hackett JM. et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater 2010; 6: 187-194
  • 31 Fagerholm P, Lagali NS, Merrett K. et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2010; 2: 46ra61
  • 32 Fagerholm P, Lagali NS, Ong JA. et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 2014; 35: 2420-2427
  • 33 Fuchsluger T, Salehi S, Petsch C. et al. [New possibilities for ocular surface reconstruction: collagen membranes and biocompatible elastomer nanofibers]. Ophthalmologe 2014; 111: 1019-1026
  • 34 Pasechnikova NV. Notfall-Keratoplastik mit porcinen Xenotransplantaten bei nekrotisierender Keratitis. Klin Monatsbl Augenheilkd [in Druck]
  • 35 van Essen TH, Lin CC, Hussain AK. et al. A fish scale-derived collagen matrix as artificial cornea in rats: properties and potential. Invest Ophthalmol Vis Sci 2013; 54: 3224-3233
  • 36 van Essen TH, van Zijl L, Possemiers T. et al. Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials 2016; 81: 36-45
  • 37 Hos D, van Essen TH, Bock F. et al. [Decellularized collagen matrix from tilapia fish scales for corneal reconstruction (BioCornea)]. Ophthalmologe 2014; 111: 1027-1032