Rofo 2017; 189(08): 728-739
DOI: 10.1055/s-0043-108550
Review
© Georg Thieme Verlag KG Stuttgart · New York

Diagnosis and Differential Diagnosis of Hydrocephalus in Adults

Article in several languages: English | deutsch
Sönke Langner
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald
,
Steffen Fleck
2   Department of Neurosurgery, University Medicine Greifswald, Germany
,
Jörg Baldauf
2   Department of Neurosurgery, University Medicine Greifswald, Germany
,
Birger Mensel
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald
,
Jens Peter Kühn
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald
,
Michael Kirsch
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald
› Author Affiliations
Further Information

Publication History

19 December 2016

15 March 2017

Publication Date:
16 May 2017 (online)

Dedication

Professor Hosten on the occasion of his 60th birthday

Abstract

Purpose Hydrocephalus is caused by an imbalance of production and absorption of cerebrospinal fluid (CSF) or obstruction of its pathways, resulting in ventricular dilatation and increased intracranial pressure. Imaging plays a crucial role in the diagnosis, differential diagnosis and planning of treatment.

Methods This review article presents the different types of hydrocephalus und their typical imaging appearance, describes imaging techniques, and discusses differential diagnoses of the different forms of hydrocephalus.

Results and Conclusion Imaging plays a central role in the diagnosis of hydrocephalus. While magnetic resonance (MR) imaging is the first-line imaging modality, computed tomography (CT) is often the first-line imaging test in emergency patients.

Key points

  • Occlusive hydrocephalus is caused by obstruction of CSF pathways.

  • Malabsorptive hydrocephalus is caused by impaired CSF absorption.

  • The MR imaging protocol should always include sagittal high-resolution T2-weighted images.

  • When an inflammatory etiology is suspected, imaging with contrast agent administration is necessary.

Citation Format

  • Langner S, Fleck S, Baldauf J et al. Diagnosis and Differential Diagnosis of Hydrocephalus in Adults. Fortschr Röntgenstr 2017; 189: 728 – 739

 
  • References

  • 1 Kahle KT. Kulkarni AV. Limbrick Jr DD. et al. Hydrocephalus in children. Lancet (London, England) 2016; 387: 788-799
  • 2 Reith W. Yilmaz U. Hydrocephalus and intracranial hypotension. Der Radiologe 2012; 52: 821-826
  • 3 Symss NP. Oi S. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. Journal of neurosurgery Pediatrics 2013; 11: 170-177
  • 4 Eymann R. Clinical symptoms of hydrocephalus. Der Radiologe 2012; 52: 807-812
  • 5 Sakka L. Coll G. Chazal J. Anatomy and physiology of cerebrospinal fluid. European annals of otorhinolaryngology, head and neck diseases 2011; 128: 309-316
  • 6 Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurgical review 2004; 27: 145-165 discussion 166-147
  • 7 Brinker T. Stopa E. Morrison J. et al. A new look at cerebrospinal fluid circulation. Fluids and barriers of the CNS 2014; 11: 10
  • 8 Bulat M. Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain research reviews 2011; 65: 99-112
  • 9 Oreskovic D. Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain research reviews 2010; 64: 241-262
  • 10 Preuss M. Hoffmann KT. Reiss-Zimmermann M. et al. Updated physiology and pathophysiology of CSF circulation – the pulsatile vector theory. Child's nervous system – official journal of the International Society for Pediatric Neurosurgery 2013; 29: 1811-1825
  • 11 Fink KR. Benjert JL. Imaging of Nontraumatic Neuroradiology Emergencies. Radiologic clinics of North America 2015; 53: 871-890 , x
  • 12 Kartal MG. Algin O. Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: An update. Insights into imaging 2014; 5: 531-541
  • 13 LeMay M. Hochberg FH. Ventricular differences between hydrostatic hydrocephalus and hydrocephalus ex vacuo by computed tomography. Neuroradiology 1979; 17: 191-195
  • 14 Ragan DK. Cerqua J. Nash T. et al. The accuracy of linear indices of ventricular volume in pediatric hydrocephalus: technical note. Journal of neurosurgery Pediatrics 2015; 15: 547-551
  • 15 Pini L. Pievani M. Bocchetta M. et al. Brain atrophy in Alzheimer's Disease and aging. Ageing research reviews 2016; 30: 25-48
  • 16 Kim H. Jeong EJ. Park DH. et al. Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption?. Journal of neurosurgery 2016; 124: 334-341
  • 17 Kartal MG. Ocakoglu G. Algin O. Feasibility of 3-dimensional sampling perfection with application optimized contrast sequence in the evaluation of patients with hydrocephalus. Journal of computer assisted tomography 2015; 39: 321-328
  • 18 Bradley Jr WG. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus. Seminars in ultrasound, CT, and MR 2016; 37: 120-128
  • 19 Jaeger M. Khoo AK. Conforti DA. et al. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus. Journal of clinical neuroscience – official journal of the Neurosurgical Society of Australasia 2016; 33: 169-172
  • 20 Qvarlander S. Ambarki K. Wahlin A. et al. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta neurologica Scandinavica 2016; DOI: 10.1111/ane.12636.
  • 21 Dincer A. Ozek MM. Radiologic evaluation of pediatric hydrocephalus. Child's nervous system – official journal of the International Society for Pediatric Neurosurgery 2011; 27: 1543-1562
  • 22 Osborn AG. Preece MT. Intracranial cysts: radiologic-pathologic correlation and imaging approach. Radiology 2006; 239: 650-664
  • 23 Beaumont TL. Limbrick Jr DD. Rich KM. et al. Natural history of colloid cysts of the third ventricle. Journal of neurosurgery 2016; 125: 1420-1430
  • 24 Langner S. Buelow R. Fleck S. et al. Management of Intracranial Incidental Findings on Brain MRI. Fortschr Röntgenstr 2016; 188: 1123-1133
  • 25 Schroeder HW. Oertel J. Gaab MR. Endoscopic treatment of cerebrospinal fluid pathway obstructions. Neurosurgery 2007; 60: ONS44-ONS51 ; discussion ONS51-42
  • 26 Vaz-Guimaraes Filho FA. Ramalho CO. Suriano IC. et al. Neuroendoscopic surgery for unilateral hydrocephalus due to inflammatory obstruction of the Monro foramen. Arquivos de neuro-psiquiatria 2011; 69: 227-231
  • 27 Webb CM. White Jr AC. Update on the Diagnosis and Management of Neurocysticercosis. Current infectious disease reports 2016; 18: 44
  • 28 Boydston WR. Sanford RA. Muhlbauer MS. et al. Gliomas of the tectum and periaqueductal region of the mesencephalon. Pediatric neurosurgery 1991; 17: 234-238
  • 29 Igboechi C. Vaddiparti A. Sorenson EP. et al. Tectal plate gliomas: a review. Child's nervous system – official journal of the International Society for Pediatric Neurosurgery 2013; 29: 1827-1833
  • 30 Langner S. Kirsch M. Radiological Diagnosis and Differential Diagnosis of Headache. Fortschr Röntgenstr 2015; 187: 879-891
  • 31 Lensing FD. Abele TA. Sivakumar W. et al. Pineal region masses – imaging findings and surgical approaches. Current problems in diagnostic radiology 2015; 44: 76-87
  • 32 Grossman R. Ram Z. Posterior Fossa Intra-Axial Tumors in Adults. World neurosurgery 2016; 88: 140-145
  • 33 Shih RY. Smirniotopoulos JG. Posterior Fossa Tumors in Adult Patients. Neuroimaging clinics of North America 2016; 26: 493-510
  • 34 Rath TJ. Hughes M. Arabi M. et al. Imaging of cerebritis, encephalitis, and brain abscess. Neuroimaging clinics of North America 2012; 22: 585-607
  • 35 Sarrazin JL. Bonneville F. Martin-Blondel G. Brain infections. Diagnostic and interventional imaging 2012; 93: 473-490
  • 36 Shi YZ. Wang ZQ. Xu YM. et al. MR findings of primary choroid plexus papilloma of the cerebellopontine angle: report of three cases and literature reviews. Clinical neuroradiology 2014; 24: 263-267
  • 37 Lieb JM. Stippich C. Ahlhelm FJ. Normal pressure hydrocephalus. Der Radiologe 2015; 55: 389-396
  • 38 Picascia M. Zangaglia R. Bernini S. et al. A review of cognitive impairment and differential diagnosis in idiopathic normal pressure hydrocephalus. Functional neurology 2015; 30: 217-228
  • 39 Kitagaki H. Mori E. Ishii K. et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR American journal of neuroradiology 1998; 19: 1277-1284
  • 40 Markey KA. Mollan SP. Jensen RH. et al. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. The Lancet Neurology 2016; 15: 78-91
  • 41 Friedman DI. Liu GT. Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 2013; 81: 1159-1165
  • 42 Bidot S. Saindane AM. Peragallo JH. et al. Brain Imaging in Idiopathic Intracranial Hypertension. Journal of neuro-ophthalmology 2015; 35: 400-411
  • 43 Bakkour A. Morris JC. Wolk DA. et al. The effects of aging and Alzheimer's disease on cerebral cortical anatomy: specificity and differential relationships with cognition. NeuroImage 2013; 76: 332-344
  • 44 Richards JE. Sanchez C. Phillips-Meek M. et al. A database of age-appropriate average MRI templates. NeuroImage 2016; 124: 1254-1259
  • 45 Filippi M. MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment. Journal of neurology 2015; 262: 1-6
  • 46 Holt JL. Kraft-Terry SD. Chang L. Neuroimaging studies of the aging HIV-1-infected brain. Journal of neurovirology 2012; 18: 291-302
  • 47 Arrillaga-Romany IC. Dietrich J. Imaging findings in cancer therapy-associated neurotoxicity. Seminars in neurology 2012; 32: 476-486
  • 48 Rojas R. Riascos R. Vargas D. et al. Neuroimaging in drug and substance abuse part I: cocaine, cannabis, and ecstasy. Topics in magnetic resonance imaging 2005; 16: 231-238
  • 49 Dickson JM. Weavers HM. Mitchell N. et al. The effects of dehydration on brain volume – preliminary results. International journal of sports medicine 2005; 26: 481-485