Neonatologie Scan 2017; 06(02): 147-166
DOI: 10.1055/s-0043-108276
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Früherkennung der Infantilen Zerebralparese

Carla-Sophie Bultmann
,
Saya Fukuda
,
Martin Häusler
,
Thorsten Orlikowsky
,
Mark Schoberer
Further Information

Publication History

Publication Date:
21 June 2017 (online)

Die Infantile Zerebralparese ist die häufigste motorische Behinderung im Kindesalter. Die Frühgeburtlichkeit ist gesicherter Hauptrisikofaktor und erfordert angesichts der steigenden Überlebensrate extremer Frühgeborener eine strukturierte und langfristige interdisziplinäre Nachsorge der motorischen und kognitiven Entwicklung. Die frühzeitige Identifikation von Risikopatienten und die therapeutische Intervention können die Entwicklungsprognose positiv beeinflussen.

Kernaussagen
  • Jedes Kind, das in der Schwangerschaft und Perinatalzeit einem nachgewiesenem Risikofaktor ausgesetzt war, sollte mit zuverlässigen Methoden frühzeitig auf sein ICP-Risiko untersucht werden.

  • Die prognostische Validität der klinischen Untersuchung alleine reicht dazu insbesondere in den ersten Lebensmonaten nicht aus. Die Kombination mehrerer Verfahren und der Einsatz longitudinaler Untersuchungen erhöhen die prognostische Sicherheit.

  • Eine hohe prognostische Sicherheit kann auch durch die Kombination der frühen MRT oder zerebralen Sonografie mit den Befunden der klinischen Untersuchung und des General Movement Assessments erreicht werden.

  • In der Nachsorge von Neugeborenen mit relevanten Risikofaktoren in Deutschland bildet die klinisch-neurologische Untersuchung zusammen mit bildgebenden Verfahren die Grundlage für eine Vorhersage der ICP.

  • Entwicklungsneurologische Untersuchungen im Alter von korrigiert 2 Jahren dienen der Diagnosesicherung.

  • Während die Nachsorge von sehr unreifen Frühgeborenen durch strukturelle Vorgaben und Leitlinien reguliert ist, existieren keine verbindlichen Qualitätsstandards für die Nachsorge später Frühgeborener und Reifgeborener mit anamnestischen ICP-Risikofaktoren. Diese sind aber von mehr als der Hälfte der ICP-Erkrankungen betroffen.

 
  • Literatur

  • 1 Little WJ. On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Clin Orthop Relat Res 1966; 46: 7-22
  • 2 Odding E, Roebroeck ME, Stam HJ. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil 2006; 28: 183-191
  • 3 Rosenbaum P, Paneth N, Leviton A. et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14
  • 4 Europeristat. Euro-Peristat project with SPCE and Eurocat. 2008. Im Internet: www.europeristat.com ; Zugriff am 30.04.2017
  • 5 Sellier E, Platt MJ, Andersen GL. et al. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol 2016; 58: 85-92
  • 6 Pakula AT, van Naarden Braun K, Yeargin-Allsopp M. Cerebral palsy: classification and epidemiology. Phys Med Rehabil Clin N Am 2009; 20: 425-452
  • 7 Reid SM, Meehan E, McIntyre S. et al. Temporal trends in cerebral palsy by impairment severity and birth gestation. Dev Med Child Neurol 2016; 58: 25-35
  • 8 Surveillance of Cerebral Palsy in Europe (SCPE). Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol 2000; 42: 816-824
  • 9 Surveillance of Cerebral Palsy in Europe (SCPE) Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 2002; 44: 633-640
  • 10 Palisano R, Rosenbaum P, Walter S. et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214-223
  • 11 Yang TF, Chan RC, Chuang TY. et al. Treatment of cerebral palsy with botulinum toxin: evaluation with gross motor function measure. J Formos Med Assoc 1999; 98: 832-836
  • 12 McIntyre S, Taitz D, Keogh J. et al. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 2013; 55: 499-508
  • 13 Himmelmann K, Hagberg G, Uvebrant P. The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth-year period 1999–2002. Acta Paediatr 2010; 99: 1337-1343
  • 14 Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 1997; 42: 1-8
  • 15 Back SA, Han BH, Luo NL NL. et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002; 22: 455-463
  • 16 Krageloh-Mann I, Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol 2007; 49: 144-151
  • 17 Jacobs SE, Berg M, Hunt R. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2007; CD003311
  • 18 Conde-Agudelo A, Romero R. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks' gestation: a systematic review and metaanalysis. Am J Obstet Gynecol 2009; 200: 595-609
  • 19 Schmidt B, Roberts RS, Davis P. et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 2007; 357: 1893-1902
  • 20 French NP, Hagan R, Evans SF. et al. Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol 2004; 190: 588-595
  • 21 Hutton JL, Pharoah PO. Life expectancy in severe cerebral palsy. Arch Dis Child 2006; 91: 254-258
  • 22 Strauss D, Shavelle R, Reynolds R. et al. Survival in cerebral palsy in the last 20 years: signs of improvement?. Dev Med Child Neurol 2007; 49: 86-92
  • 23 Spittle A, Orton J, Anderson PJ. et al. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev 2015; 11: CD005495
  • 24 Blauw-Hospers CH, Hadders-Algra M. A systematic review of the effects of early intervention on motor development. Dev Med Child Neurol 2005; 47: 421-432
  • 25 Boatman D, Freeman J, Vining E. et al. Language recovery after left hemispherectomy in children with late-onset seizures. Ann Neurol 1999; 46: 579-586
  • 26 Hadders-Algra M, Boxum AG, Hielkema T. et al. Effect of early intervention in infants at very high risk of cerebral palsy: a systematic review. Dev Med Child Neurol 2017; 59: 246-258
  • 27 Morgan C, Darrah J, Gordon AM. et al. Effectiveness of motor interventions in infants with cerebral palsy: a systematic review. Dev Med Child Neurol 2016; 58: 900-909
  • 28 Colver A, Rapp M, Eisemann N. et al. Self-reported quality of life of adolescents with cerebral palsy: a cross-sectional and longitudinal analysis. Lancet 2015; 385: 705-716
  • 29 Rapp M, Eisemann N, Arnaud C. et al. Predictors of parent-reported quality of life of adolescents with cerebral palsy: A longitudinal study. Res Dev Disabil 2017; 62: 259-270
  • 30 Gesundheitsberichterstattung des Bundes. Im Internet: www.gbe-bund.de ; Zugriff am 30.04.2017
  • 31 Kruse M, Michelsen SI, Flach EM. et al. Lifetime costs of cerebral palsy. Dev Med Child Neurol 2009; 51: 622-628
  • 32 AccessEconomics. The Economic Impact of Cerebral Palsy in Australia in 2007. 2008 Im Internet: www.cpaustralia.com.au ; Zugriff am 30.04.2017
  • 33 Bosanquet M, Copeland L, Ware R. et al. A systematic review of tests to predict cerebral palsy in young children. Dev Med Child Neurol 2013; 55: 418-426
  • 34 Cioni G, Prechtl HF, Ferrari F. et al. Which better predicts later outcome in fullterm infants: quality of general movements or neurological examination?. Early Human Development 1997; 50: 71-85
  • 35 Ferrari F, Cioni G, Einspieler C. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med 2002; 156: 460-467
  • 36 Cioni G, Ferrari F, Einspieler C. et al. Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr 1997; 130: 704-711
  • 37 Hamer EG, Hadders-Algra M. Prognostic significance of neurological signs in high-risk infants – a systematic review. Dev Med Child Neurol 2016; 58: 53-60
  • 38 Adde L, Rygg M, Lossius K. et al. General movement assessment: predicting cerebral palsy in clinical practise. Early Hum Dev 2007; 83: 13-18
  • 39 Seme-Ciglenecki P. Predictive values of cranial ultrasound and assessment of general movements for neurological development of preterm infants in the Maribor region of Slovenia. Wien Klin Wochenschr 2007; 119: 490-496
  • 40 Prechtl HF. State of the art of a new functional assessment of the young nervous system. An early predictor of cerebral palsy. Early Hum Dev 1997; 50: 1-11
  • 41 Prechtl HF. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 1990; 23: 151-158
  • 42 Prechtl HF. General movement assessment as a method of developmental neurology: new paradigms and their consequences. The 1999 Ronnie MacKeith lecture. Dev Med Child Neurol 2001; 43: 836-842
  • 43 Ferrari F, Frassoldati R, Berardi A. et al. The ontogeny of fidgety movements from 4 to 20weeks post-term age in healthy full-term infants. Early Hum Dev 2016; 103: 219-224
  • 44 Prechtl HF, Einspieler C, Cioni G. et al. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997; 349: 1361-1363
  • 45 Einspieler C, Peharz R, Marschik PB. Fidgety movements – tiny in appearance, but huge in impact. J Pediatr (Rio J) 2016; 92: 64-70
  • 46 Groen SE, de Blecourt AC, Postema K. et al. General movements in early infancy predict neuromotor development at 9 to 12 years of age. Dev Med Child Neurol 2005; 47: 731-738
  • 47 Bruggink JL, Van Braeckel KN, Bos AF. The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics 2010; 125: e1356-e1363
  • 48 Einspieler C, Marschik PB, Pansy J. et al. The general movement optimality score: a detailed assessment of general movements during preterm and term age. Dev Med Child Neurol 2016; 58: 361-368
  • 49 Yeh KK, Liu WY, Wong AM. et al. Intra-observer reliability of Prechtl's method for the qualitative assessment of general movements in Taiwanese infants. J Phys Ther Sci 2016; 28: 1588-1594
  • 50 Mirmiran M, Barnes PD, Keller K. et al. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004; 114: 992-998
  • 51 Nanba Y, Matsui K, Aida N. et al. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics 2007; 20: e10-e19
  • 52 Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. Jama 2006; 296: 1602-1608
  • 53 Towsley K, Shevell MI, Dagenais L. Population-based study of neuroimaging findings in children with cerebral palsy. Eur J Paediatr Neurol 2011; 15: 29-35
  • 54 Himmelmann K, Horber V, De La Cruz J. et al. MRI classification system (MRICS) for children with cerebral palsy: development, reliability, and recommendations. Dev Med Child Neurol 2016; 59: 57-64
  • 55 Chau V, Synnes A, Grunau RE. et al. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 2013; 81: 2082-2089
  • 56 De Vries LS, Van Haastert IL, Rademaker KJ. et al. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 2004; 144: 815-820
  • 57 Hope TA, Gregson PH, Linney NC. et al. Selecting and assessing quantitative early ultrasound texture measures for their association with cerebral palsy. IEEE Trans Med Imaging 2008; 27: 228-236
  • 58 Debillon T, NʼGuyen S, Muet A. et al. Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed 2003; 88: F275-F279
  • 59 Kuban KC, Allred EN, OʼShea TM. et al. Cranial ultrasound lesions in the NICU predict cerebral palsy at age 2 years in children born at extremely low gestational age. J Child Neurol 2009; 24: 63-72
  • 60 Marcroft C, Khan A, Embleton N. et al. Movement recognition technology as a method of assessing spontaneous general movements in high risk infants. Front Neurol 2014; 5: 284
  • 61 Meinecke L, Breitbach-Faller N, Bartz C. et al. Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. Hum Mov Sci 2006; 25: 125-144
  • 62 Disselhorst-Klug C, Heinze F, Breitbach-Faller N. et al. Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants. Exp Brain Res 2012; 218: 305-313
  • 63 Heinze F, Hesels K, Breitbach-Faller N. et al. Movement analysis by accelerometry of newborns and infants for the early detection of movement disorders due to infantile cerebral palsy. Med Biol Eng Comput 2010; 48: 765-772
  • 64 GBA. Richtlinie des Gemeinsamen Bundesausschusses zur Qualitätssicherung der Versorgung von Früh- und Reifgeborenen. Im Internet: https://www.g-ba.de/informationen/richtlinien/41/ ; Zugriff am 30.04.2017
  • 65 AWMF. Sozialpädiatrischen Nachsorge extrem unreifer Frühgeborener mit einem Geburtsgewicht von unter 1000 Gramm. Im Internet: http://www.awmf.org/leitlinien/detail/ll/071-013.html. ; Zugriff am 30.04.2017
  • 66 DGSPJ. Behandlungskonzept bei Kindern mit Infantiler Zerebralparese. Im Internet: http://www.dgspj.de/wp-content/uploads/service-archiv-leitlinie-icp-2004.pdf ; Zugriff am 30.04.2017
  • 67 Zarrinkalam R, Russo RN, Gibson CS. et al. CP or not CP? A review of diagnoses in a cerebral palsy register. Pediatr Neurol 2010; 42: 177-180
  • 68 Struck A, Almaazmi M, Bode H. et al. Neurodevelopmental outcome of very low birth weight infants born at the Perinatal Centre in Ulm, Germany. Z Geburtshilfe Neonatol 2013; 217: 65-71
  • 69 Stellungnahme der DGSPJ, der GNPI und der GNP zu der Richtlinie des Gemeinsamen Bundesausschusses. Im Internet: http://www.dgspj.de/wp-content/uploads/service-archiv-stellungnahme-zweijahresuntersuchung-2007.pdf ; Zugriff am 16.05.2017
  • 70 Reid SM, Dagia CD, Ditchfiled MR. et al. Population-based studies of brain imaging patterns in cerebral palsy. Dev Med Child Neurol 2014; 56: 222-232
  • 71 Ashwal S, Russmann B, Blasco P. et al. Practice parameter: diagnostic assessment of the child with cerebral palsy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2004; 62: 851-863