Planta Med 2017; 83(11): 946-953
DOI: 10.1055/s-0043-106585
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Phylogenetic Analysis and Molecular Characterization of Xanthium sibiricum Using DNA Barcoding, PCR-RFLP, and Specific Primers[*]

Salvatore Tomasello
Systematic Botany and Mycology, Department Biology I, Ludwig-Maximilians-University Munich (LMU) and GeoBio-Center (LMU), Munich, Germany
,
Günther Heubl
Systematic Botany and Mycology, Department Biology I, Ludwig-Maximilians-University Munich (LMU) and GeoBio-Center (LMU), Munich, Germany
› Author Affiliations
Further Information

Publication History

received 23 September 2016
revised 17 February 2017

accepted 13 March 2017

Publication Date:
10 April 2017 (online)

Abstract

The fruits of Xanthium sibiricum have been widely used in traditional Chinese medicine for the treatment of nasal sinusitis and headaches. The genus Xanthium (cocklebur) is a taxonomically complex genus. Different taxonomic concepts have been proposed, some including several species, others lumping the different taxa in a few extremely polymorphic species. Due to the morphological similarities between species, the correct authentication of X. sibiricum is very difficult. Therefore, we established a polymerase chain reaction-restriction fragment length polymorphism method and diagnostic PCR based on nuclear internal transcribed spacer and chloroplast trnQ-rps16 barcodes to differentiate X. sibirium from related species.

Results from the phylogenetic analyses based on sequence information from four marker regions (plastidal psbA-trnH and trnQ-rps16 and nuclear ITS and D35) support those taxonomic concepts accepting a reduced number of species, as four to five major clades are revealed in the phylogenetic reconstructions. X. sibiricum, together with some accessions from closely related taxa, is always supported as monophyletic, constituting a well-defined genetic entity. Allele-specific primer pairs for ITS and trnQ-rps16 were designed to amplify diagnostic products from the genomic DNA of X. sibiricum. Specific PCR in combination with digestion using the restriction enzyme MseI allowed for the identification of X. sibiricum by producing specific restriction patterns. The results demonstrate that the applied techniques provide effective and accurate authentication of X. sibiricum.

* This publication is dedicated to Prof. Dr. Rudolf Bauer on the occasion of his 60th birthday.


Supporting information

 
  • References

  • 1 Parsons WT. Noxious Weeds of Victoria. Melbourne: Inkata Press; 1973: 300
  • 2 Reed CF, Hughes RD. Selected Weeds of the United States. U. S. Dep. Agric. Res. Serv. Agric. Handbook No. 366. Washington: U.S. Govt. Printing Office; 1970
  • 3 Martin RJ. Distribution, Ecology and Control of Xanthium Species [Dissertation]. Canberra: Australian National University; 1981
  • 4 Widder FJ. Die Arten der Gattung Xanthium. Beiträge zu einer Monographie. Rep Spec Nov Regni Veg 1923; 20: 1-222
  • 5 Sell PD, Murrell JG. Flora of Great Britain and Ireland, Vol. 4. Cambridge: Cambridge University Press; 2006
  • 6 Löve D, Dansereau P. Biosystematic studies on Xanthium: taxonomic appraisal and ecological status. Can J Bot 1959; 37: 173-208
  • 7 Holm LG, Plucknett DL, Pancho JV, Herbergsr JP. The Worldʼs worst Weeds. Honolulu: University of Hawaii Press; 1977: 609
  • 8 Weawer SE, Lechowicz MJ. The biology of Canadian weeds. 56. Xanthium strumarium L. Can J Plant Sci 1983; 63: 211-225
  • 9 Hicks JA. Systematic Studies of Xanthium (Compositae: Ambrosieae); the Cockleburs of Tazewell Country, Illinois [Dissertation]. Urbana-Champaign: University Illinois; 1971
  • 10 Nadeau LH. Etude biosystematique sur le genre Xanthium [unpubl. PhD thesis]. Montreal: University of Montreal; 1961
  • 11 Strother JR. Xanthium . In: Flora of North America Editorial Committee, eds. Flora of North America, vol. 21. New York, Oxford: Oxford University Press; 2006: 19-20
  • 12 Stuart BP, Cole RJ, Gosser HS. Cocklebur (Xanthium strumarium var. strumarium) intoxication in swine: review and redefinition of the toxic principle. Vet Pathol 1981; 18: 368-383
  • 13 Witte ST, Osweiler GD, Stahr HM, Mobley G. Cocklebur toxicosis in cattle associated with the consumption of mature Xanthium strumarium . J Vet Diagn Invest 1990; 2: 263-267
  • 14 Méndez MC, Santos RC, Riet-Correa F. Intoxication by Xanthium cavanillesii in cattle and sheep in southern Brazil. Vet Hum Toxicol 1998; 40: 144-147
  • 15 Cole RJ, Stuart BP, Lansden JA, Cox RX. Isolation and redefinition of the toxic agent from cocklebur Xanthium strumarium . J Agric Food Chem 1980; 28: 1330
  • 16 Pfaff E, Klingenberg M, Heldt HW. Unspecific permeation and specific exchange of adenine nucleotides in liver mitochondria. Biochim Biophys Acta 1965; 104: 312-315
  • 17 Vignais PV, Vignais PM, Defaye G. Gummiferin, an inhibitor of the adenine-nucleotide translocation. Study of its binding properties to mitochondria. FEBS Lett 1971; 17: 281-288
  • 18 An HJ, Jeong HJ, Lee EH, Kim YK, Hwang QJ, Yoo SJ, Hong SH, Kim HM. Xanthii Fructus inhibits inflammatory responses in LPS-stimulated mouse peritoneal macrophages. Inflammation 2004; 28: 263-270
  • 19 Hong SH, Jeong HJ, Kim HM. Inhibitory effects of Xanthii Fructus extract on mast cell-mediated allergic reaction in murine model. J Ethnopharmacol 2003; 88: 229-234
  • 20 Song MY, Kim EK, Lee HJ, Park JW, Ryu DG, Kwon KB, Park BH. Fructus Xanthii extract protects against cytokine-induced damage in pancreatic beta-cells through suppression of NF-kappaB activation. Int J Mol Med 2009; 23: 547-553
  • 21 Pharmacopoeia Commission. Pharmacopoeia of the Peopleʼs Republic of China, Volume I. Beijing: China Medical Science Press; 2010: 461
  • 22 An J, Wang YD, Sheng CC, Wang GZ. Comparative analysis of carboxyatractyloside and atractyloside contents in Xanthii Fructus before and after processing. Chin J Pharm Anal 2013; 33: 1910-1913
  • 23 Nikles S, Heuberger H, Hilsdorf E, Schmücker R, Seidenberger R, Bauer R. Influence of processing on the content of toxic carboxyatractyloside and atractyloside and the microbiological status of Xanthium sibiricum fruits (Cangʼerzi). Planta Med 2015; 81: 1213-1220
  • 24 Wallace LJ, Boilard SMAL, Eagle SHC, Spall JL, Shokaralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int 2012; 49: 446-452
  • 25 Ferri G, Corradini B, Ferrari S, Santunione AL, Palazzoli F, Alú M. Forensic botany II, DNA barcode for land plants: which markers after the international agreement?. Forensic Sci Int 2015; 15: 131-136
  • 26 Zhao X, Hu W. Application of ITS2 sequence as DNA barcode in Xanthium . Agric Biotechnol 2014; 3: 19-21
  • 27 Millspaugh CF, Sherrf EE. Revision of the North American species of Xanthium. Field Museum Natural History Publication 204. Botanical Series 1919; 4: 9-49
  • 28 Wang J, Liu X, Zhang Y, Song M, Lin Y, Ma X, Sun W, Xiang L, Hu Z, Wu L, Zhang X, Hu W. Identification of Xanthii Fructus and its adulterants based on ITS2 sequence. World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica 2014; 16: 329-334
  • 29 Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM. Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 2007; 115: 747-755
  • 30 Meimberg H. Molekular-Systematische Untersuchungen an den Familien Nepenthaceae und Ancistrocladaceae sowie verwandter Taxa aus der Unterklasse Caryophyllidae s.l. [diploma thesis]. Munich: Ludwigs-Maximilian-Universität (LMU); 2002
  • 31 White TJ, Bruns T, Lee S, Taylor J. Amplification and direct Sequencing of fungal ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninski JJ, White TJ. eds. PCR Protocols. A Guide to Methods and Applications, UK eEdition. San Diego: Academic Press; 1990: 315-322
  • 32 Shaw J, Small RL. Addressing the ʼhardest puzzle in American pomologyʼ: phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am J Bot 2004; 91: 985-996
  • 33 Calviño IC, Downie SR. Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Mol Phylogenet Evol 2007; 44: 175-191
  • 34 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725-2729
  • 35 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673-4680
  • 36 Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9: 772
  • 37 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539-542
  • 38 Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for Inference of large phylogenetic Trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans: 2010: 1-8
  • 39 Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 2000; 49: 369-381
  • 40 Young N, Healy J. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 2003; 4: 6
  • 41 Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. Available at. http://tree.bio.ed.ac.uk/software/tracer/ Accessed January 23, 2015
  • 42 Müller K. SeqState – primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinformatics 2005; 4: 65-69
  • 43 Müller K. Incorporating information from length-mutational events into phylogenetic analysis. Mol Phylogenet Evol 2006; 38: 667-676
  • 44 Vincze T, Posfai J, Roberts RJ. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 2003; 31: 3688-3691