Pneumologie 2017; 71(05): 269-289
DOI: 10.1055/s-0043-106559
Symposiumsbericht
© Georg Thieme Verlag KG Stuttgart · New York

Expertentreffen COPD: Exazerbation der COPD[1]

Exacerbation of COPD
J. Lorenz
 1   Klinik für Pneumologie und Internistische Intensivmedizin, Klinikum Lüdenscheid
,
R. Bals
 2   Pneumologie, Allergologie, Beatmungsmedizin, Universitätsklinikum des Saarlandes
,
M. Dreher
 3   Sektion Pneumologie, Medizinische Klinik I, Universitätsklinikum Aachen
,
B. Jany
 4   Innere Medizin, Missionsärztliche Klinik Würzburg
,
R. Koczulla
 5   Klinik für Innere Medizin, Schwerpunkt Pneumologie, Universitätsklinikum Marburg
,
M. Pfeifer
 6   Pneumologie, Klinik Donaustauf und Universitätsklinikum Regensburg
,
W. Randerath
 7   Klinik für Pneumologie und Allergologie, Krankenhaus Bethanien, Solingen
,
G. Steinkamp
 8   Medizinisch-wissenschaftliches Publizieren, Schwerin
,
C. Taube
 9   Department of Pulmonology, Leiden University Medical Center
,
H. Watz
10   Pneumologisches Forschungsinstitut an der LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL)
,
W. Windisch
11   Abteilung Pneumologie – Lungenklinik, Krankenhaus Merheim – Kliniken Köln, Universität Witten/Herdecke
› Author Affiliations
Further Information

Publication History

Publication Date:
15 May 2017 (online)

Zusammenfassung

Akute Verschlechterungen der chronisch obstruktiven Lungenerkrankung (COPD) galten über lange Zeit als vorübergehende, gelegentlich auch lebensbedrohliche Symptomverschlechterungen, die jedoch keinen Bezug zum Verlauf der Grunderkrankung haben. Erst Mitte des letzten Jahrzehnts wurde gezeigt, dass Patienten mit schweren, stationär behandlungsbedürftigen Exazerbationen in der Folge eine erheblich erhöhte Sterblichkeit aufweisen. Diese Einsicht konnte 2012 durch eine große, populationsbasierte Kohortenanalyse konsolidiert werden. Heute gilt die schwere Exazerbation als ein Hauptrisikofaktor für die Krankheitsprogression. In der vorliegenden Zusammenfassung einer Expertentagung im Februar 2017 wird der aktuelle Stand der Kenntnisse zur Exazerbation der COPD dargestellt. Er umfasst die pathogenetischen Prozesse, die auslösenden Mechanismen, die Charakteristika der Patientengruppen mit häufigen Exazerbationen und die Prädiktoren einer schlechten Überlebensprognose. Die Rolle von Komorbiditäten wird näher betrachtet. Die Darstellung der Pharmakotherapie der Exazerbation wird ergänzt durch eine ausführliche Betrachtung des ventilatorischen Supports. Zur Frage der Exazerbationsprävention werden die verfügbaren Pharmaka analysiert. Die Bedeutung nicht medikamentöser Präventivmaßnahmen wird im Einzelnen untersucht.

Abstract

Acute worsenings of chronic obstructive pulmonary disease (COPD) were for a long time regarded as transient deteriorations, although occasionally life-threatening. No connection to disease progression was recognized. Data emerging during the last decade showed that patients had a considerably worse survival outcome after severe exacerbations. This insight was consolidated in 2012 by a large population-based cohort analysis. At present, severe exacerbations are regarded as key risk factors for COPD disease progression. The present article summarises the current knowledge on exacerbations of COPD, as delineated during an expert workshop in February 2017. It comprises pathogenic mechanisms, exacerbation triggers, the characteristics of frequent exacerbators, and the predictors of worse survival outcome. The role of comorbidities is considered more closely. The presentation of the pharmacotherapy of acute exacerbation is supplemented by an overview of ventilatory support. Finally, pharmacological and nonpharmacological preventive measures are summarised.

1 Sponsor: Boehringer Ingelheim Pharma GmbH & Co KG


 
  • Literatur

  • 1 Bortis H. Krise, Krisentheorie und Krise der Theorie. Bulletin Nr. 2 der Vereinigung der Schweizerischen Hochschulen. 2009: 9-15
  • 2 Marx K. Riccardos Akkumulationstheorie und Kritik derselben. Marx Engels Werke, Band 26.2. Berlin: Dietz Verlag; 1972: 508
  • 3 Hogg JC, Chu F, Utokaparch S. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 2645-2653
  • 4 Lopez-Campos JL, Calero C, Quintana-Gallego E. Symptom variability in COPD: a narrative review. Int J Chron Obstruct Pulmon Dis 2013; 8: 231-238
  • 5 Cabral ALB, Conceicao GM, Saldiva PHN. et al. Effect of asthma severity on symptom perception in childhood asthma. Braz J Med Biol Res 2002; 35: 319-327
  • 6 Fritz GK, Adams SK, McQuaid EL. et al. Symptom perception in pediatric asthma: resistive loading and in vivo assessment compared. Chest 2007; 132: 884-889
  • 7 Niewoehner DE, Erbland ML, Deupree RH. et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. N Engl J Med 1999; 340: 1941-1947
  • 8 Anzueto A, Sethi S, Martinez FJ. Exacerbations of chronic obstructive pulmonary disease. Proc.Am.Thorac.Soc 2007; 4: 554-564
  • 9 Sethi S. Bacterial infection and the pathogenesis of COPD. Chest 2000; 117: 286S-291S
  • 10 Sethi S, Evans N, Grant BJB. et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347: 465-471
  • 11 Mammen MJ, Sethi S. COPD and the microbiome. Respirology 2016; 21: 590-599
  • 12 Huang YJ, Boushey HA. The sputum microbiome in chronic obstructive pulmonary disease exacerbations. Ann Am Thorac Soc 2015; 12: S176-S180
  • 13 Soyseth V, Bhatnagar R, Holmedahl NH. et al. Acute exacerbation of COPD is associated with fourfold elevation of cardiac troponin T. Heart 2013; 99: 122-126
  • 14 Aaron SD, Donaldson GC, Whitmore GA. et al. Time course and pattern of COPD exacerbation onset. Thorax 2012; 67: 238-243
  • 15 Niewoehner DE. Procalcitonin level-guided treatment reduced antibiotic use in exacerbations of COPD. ACP J.Club 2007; 146: 57
  • 16 Stolz D, Christ-Crain M, Bingisser R. et al. Antibiotic treatment of exacerbations of COPD. A randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007; 131: 9-19
  • 17 Stolz D, Christ-Crain M, Morgenthaler NG. et al. Copeptin, C-Reactive Protein, and Procalcitonin as Prognostic Biomarkers in Acute Exacerbation of COPD. Chest 2007; 131: 1058-1067
  • 18 Daubin C, Parienti JJ, Vabret A. et al. Procalcitonin levels in acute exacerbation of COPD admitted in ICU. A prospective cohort study. BMC Infect Dis 2008; 8: 145
  • 19 Stolz D, Christ-Crain M, Morgenthaler NG. et al. Plasma pro-adrenomedullin but not plasma pro-endothelin predicts survival in exacerbations of COPD. Chest 2008; 134: 263-272
  • 20 Rammaert B, Verdier N, Cavestri B. et al. Procalcitonin as a prognostic factor in severe acute exacerbation of chronic obstructive pulmonary disease. Respirology 2009; 14: 969-974
  • 21 Bafadhel M, McKenna S, Terry S. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease. A randomized placebo-controlled trial. Am J Respir Crit Care Med 2012; 186: 48-55
  • 22 Bafadhel M, Greening NJ, Harvey-Dunstan TC. et al. Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest 2016; 150: 320-328
  • 23 Soler N, Esperatti M, Ewig S. et al. Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Eur Respir J 2012; 40: 1344-1353
  • 24 Martinez FJ, Calverley PMA, Goehring U-M. et al. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet 2015; 385: 857-866
  • 25 Sundh J, Johansson G, Larsson K. et al. The phenotype of concurrent chronic bronchitis and frequent exacerbations in patients with severe COPD attending Swedish secondary care units. Int J Chron Obstruct Pulmon Dis 2015; 10: 2327-2334
  • 26 Ni Y, Shi G, Yu Y. et al. Clinical characteristics of patients with chronic obstructive pulmonary disease with comorbid bronchiectasis: a systemic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2015; 10: 1465-1475
  • 27 Beeh KM, Glaab T, Stowasser S. et al. Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial. Respir Res 2013; 14: 116
  • 28 Miller BE, Tal-Singer R, Rennard SI. et al. Plasma Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. Am J Respir Crit Care Med 2016; 193: 607-613
  • 29 Keene JD, Jacobson S, Kechris K. et al. Biomarkers Predictive of Exacerbations in the SPIROMICS and COPDGene Cohorts. Am J Respir Crit Care Med 2017; 195: 473-481
  • 30 Pascoe S, Locantore N, Dransfield MT. et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med 2015; 3: 435-442
  • 31 Watz H, Tetzlaff K, Wouters EFM. et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. Lancet Respir Med 2016; 4: 390-398
  • 32 Vedel-Krogh S, Nielsen SF, Lange P. et al. Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am J Respir Crit Care Med 2016; 193: 965-974
  • 33 Bafadhel M, McKenna S, Terry S. et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med 2011; 184: 662-671
  • 34 Donaldson GC, Wedzicha JA. Prediction of Chronic Obstructive Pulmonary Disease Exacerbation Frequency. Clinical Parameters Are Still Better Than Biomarkers. Am J Respir Crit Care Med 2017; 195: 415-416
  • 35 Dransfield MT, Kunisaki KM, Strand MJ. et al. Acute Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195: 324-330
  • 36 Hartl S, Lopez-Campos JL, Pozo-Rodriguez F. et al. Risk of death and readmission of hospital-admitted COPD exacerbations: European COPD Audit. Eur Respir J 2016; 47: 113-121
  • 37 Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012; 67: 957-963
  • 38 Connors Jr AF, Dawson NV, Thomas C. et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care Med 1996; 154: 959-967
  • 39 Almagro P, Calbo E, Ochoa de Echagüen A. et al. Mortality after hospitalization for COPD. Chest 2002; 121: 1441-1448
  • 40 Gunen H, Hacievliyagil SS, Kosar F. et al. Factors affecting survival of hospitalised patients with COPD. Eur Respir J 2005; 26: 234-241
  • 41 Jinjuvadia C, Jinjuvadia R, Mandapakala C. et al. Trends in Outcomes, Financial Burden, and Mortality for Acute Exacerbation of Chronic Obstructive Pulmonary Disease (COPD) in the United States from 2002 to 2010. COPD 2017; 14: 72-79
  • 42 Almagro P, López GarcíaF, Cabrera F. et al. Comorbidity and gender-related differences in patients hospitalized for COPD. The ECCO study. Respir Med 2010; 104: 253-259
  • 43 Rennard SI, Locantore N, Delafont B. et al. Identification of five chronic obstructive pulmonary disease subgroups with different prognoses in the ECLIPSE cohort using cluster analysis. Ann Am Thorac Soc 2015; 12: 303-312
  • 44 Garcia-Aymerich J, Gomez FP, Benet M. et al. Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax 2011; 66: 430-437
  • 45 Gudmundsson G, Ulrik CS, Gislason T. et al. Long-term survival in patients hospitalized for chronic obstructive pulmonary disease: a prospective observational study in the Nordic countries. Int J Chron Obstruct Pulmon Dis 2012; 7: 571-576
  • 46 Salturk C, Karakurt Z, Adiguzel N. et al. Does eosinophilic COPD exacerbation have a better patient outcome than non-eosinophilic in the intensive care unit?. Int J Chron Obstruct Pulmon Dis 2015; 10: 1837-1846
  • 47 Martinez-Rivera C, Portillo K, Munoz-Ferrer A. et al. Anemia is a mortality predictor in hospitalized patients for COPD exacerbation. COPD 2012; 9: 243-250
  • 48 Esteban C, Garcia-Gutierrez S, Legarreta MJ. et al. One-year Mortality in COPD After an Exacerbation: The Effect of Physical Activity Changes During the Event. COPD 2016; 13: 718-725
  • 49 Mullerova H, Maselli DJ, Locantore N. et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest 2015; 147: 999-1007
  • 50 Hoogendoorn M, Hoogenveen RT, Rutten-van Molken MP. et al. Case fatality of COPD exacerbations: a meta-analysis and statistical modelling approach. Eur Respir J 2011; 37: 508-515
  • 51 Guerrero M, Crisafulli E, Liapikou A. et al. Readmission for Acute Exacerbation within 30 Days of Discharge Is Associated with a Subsequent Progressive Increase in Mortality Risk in COPD Patients: A Long-Term Observational Study. PLoS ONE 2016; 11: e0150737
  • 52 Singanayagam A, Schembri S, Chalmers JD. Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. Ann Am Thorac Soc 2013; 10: 81-89
  • 53 Tokgoz Akyil F, Gunen H, Agca M. et al. Supervivencia en exacerbaciones de la enfermedad pulmonar obstructiva cronica que requirieron ventilacion no invasiva en planta. Arch Bronconeumol 2016; 52: 470-476
  • 54 Köhnlein T, Windisch W, Köhler D. et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2014; 2: 698-705
  • 55 Struik FM, Sprooten RTM, Kerstjens HAM. et al. Nocturnal non-invasive ventilation in COPD patients with prolonged hypercapnia after ventilatory support for acute respiratory failure: a randomised, controlled, parallel-group study. Thorax 2014; 69: 826-834
  • 56 Sogaard M, Madsen M, Lokke A. et al. Incidence and outcomes of patients hospitalized with COPD exacerbation with and without pneumonia. Int J Chron Obstruct Pulmon Dis 2016; 11: 455-465
  • 57 Sharafkhaneh A, Spiegelman AM, Main K. et al. Mortality in Patients Admitted for Concurrent COPD Exacerbation and Pneumonia. COPD 2017; 14: 23-29
  • 58 Almagro P, Salvado M, Garcia-Vidal C. et al. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012; 84: 36-43
  • 59 Esteban C, Arostegui I, Garcia-Gutierrez S. et al. A decision tree to assess short-term mortality after an emergency department visit for an exacerbation of COPD: a cohort study. Respir Res 2015; 16: 151
  • 60 Windisch W, Schonhofer B, Magnet FS. et al. Diagnosis and Treatment of Diaphragmatic Dysfunction. Pneumologie 2016; 70: 454-461
  • 61 Beeh K-M, Westerman J, Kirsten A-M. et al. The 24-h lung-function profile of once-daily tiotropium and olodaterol fixed-dose combination in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 32: 53-59
  • 62 Evans TW. International Consensus Conferences in Intensive Care Medicine: non-invasive positive pressure ventilation in acute respiratory failure. Organised jointly by the American Thoracic Society, the European Respiratory Society, the European Society of Intensive Care Medicine, and the Societe de Reanimation de Langue Francaise, and approved by the ATS Board of Directors, December 2000. Intensive Care Med 2001; 27: 166-178
  • 63 Brochard L, Mancebo J, Wysocki M. et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333: 817-822
  • 64 Lightowler JV, Wedzicha JA, Elliott MW. et al. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ 2003; 326: 185
  • 65 Chandra D, Stamm JA, Taylor B. et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998-2008. Am J Respir Crit Care Med 2012; 185: 152-159
  • 66 Bayarassou AH, Storre JH, Windisch W. Common mistakes leading to NIV failure. Minerva Pneumologica 2013; 52: 39-53
  • 67 Westhoff M, Schonhofer B, Neumann P. et al. Noninvasive Mechanical Ventilation in Acute Respiratory Failure. Pneumologie 2015; 69: 719-756
  • 68 Gattinoni L, Kolobow T, Tomlinson T. et al. Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth 1978; 50: 753-758
  • 69 Morelli A, Del SL, Pesenti A. et al. Extracorporeal carbon dioxide removal (ECCO2R) in patients with acute respiratory failure. Intensive Care Med 2017; 43: 519-530
  • 70 Karagiannidis C, Philipp A, Strassmann S. et al. Extrakorporale CO2-Elimination (ECCO2R): von der Pathophysiologie zur klinischen Anwendung beim hyperkapnischen respiratorischen Versagen. Pneumologie 2017; 71: 215-220
  • 71 Kluge S, Braune SA, Engel M. et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 2012; 38: 1632-1639
  • 72 Moerer O, Quintel M. Protective and ultra-protective ventilation: using pumpless interventional lung assist (iLA). Minerva Anestesiol 2011; 77: 537-544
  • 73 Del Sorbo L, Pisani L, Filippini C. et al. Extracorporeal Co2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med 2015; 43: 120-127
  • 74 Sklar MC, Beloncle F, Katsios CM. et al. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med 2015; 41: 1752-1762
  • 75 Braune S, Sieweke A, Brettner F. et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med 2016; 42: 1437-1444
  • 76 Karagiannidis C, Strassmann S, Philipp A. et al. Veno-venous extracorporeal CO2 removal improves pulmonary hypertension in acute exacerbation of severe COPD. Intensive Care Med 2015; 41: 1509-1510
  • 77 Karagiannidis C, Brodie D, Strassmann S. et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 2016; 42: 889-896
  • 78 Barbaro RP, Odetola FO, Kidwell KM. et al. Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Respir Crit Care Med 2015; 191: 894-901
  • 79 Huttmann SE, Windisch W, Storre JH. Invasive home mechanical ventilation: living conditions and health-related quality of life. Respiration 2015; 89: 312-321
  • 80 Windisch W, Brambring J, Budweiser S. et al. Nichtinvasive und invasive Beatmung als Therapie der chronischen respiratorischen Insuffizienz. S2-Leitlinie herausgegeben von der Deutschen Gesellschaft fur Pneumologie und Beatmungsmedizin e. V. Pneumologie 2010; 64: 207-240
  • 81 Global Initiative for Chronic Obstructive Lung Disease, Inc. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. (Updated) 2017 http://goldcopd.org
  • 82 Windisch W, Storre JH, Kohnlein T. Nocturnal non-invasive positive pressure ventilation for COPD. Expert Rev Respir Med 2015; 9: 295-308
  • 83 Dreher M, Storre JH, Schmoor C. et al. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial. Thorax 2010; 65: 303-308
  • 84 Murphy Pea. LATE-BREAKING ABSTRACT: Improving admission free survival with home mechanical ventilation (HMV) and home oxygen therapy (HOT) following life threatening COPD exacerbations: HoT-HMV UK Trial NCT00990132. http://www.ers-education.org/events/international-congress/london-2016.aspx?idParent=151783
  • 85 Faner R, Cruz T, Lopez-Giraldo A. et al. Network medicine, multimorbidity and the lung in the elderly. Eur Respir J 2014; 44: 775-788
  • 86 Miravitlles M, Marín A, Monsó E. et al. Efficacy of moxifloxacin in the treatment of bronchial colonisation in COPD. Eur Respir J 2009; 34: 1066-1071
  • 87 Barker BL, Haldar K, Patel H. et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest 2015; 147: 46-55
  • 88 Santos S, Marin A, Serra-Batlles J. et al. Treatment of patients with COPD and recurrent exacerbations: the role of infection and inflammation. Int J Chron Obstruct Pulmon Dis 2016; 11: 515-525
  • 89 Rohde G, Wiethege A, Borg I. et al. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax 2003; 58: 37-42
  • 90 Hewitt R, Farne H, Ritchie A. et al. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis 2016; 10: 158-174
  • 91 Footitt J, Mallia P, Durham AL. et al. Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD. Chest 2016; 149: 62-73
  • 92 McKendry RT, Spalluto CM, Burke H. et al. Dysregulation of Antiviral Function of CD8(+) T Cells in the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1-PD-L1 Axis. Am J Respir Crit Care Med 2016; 193: 642-651
  • 93 Matkovic Z, Miravitlles M. Chronic bronchial infection in COPD. Is there an infective phenotype?. Respir Med 2013; 107: 10-22
  • 94 Mallia P, Footitt J, Sotero R. et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 1117-1124
  • 95 Jenkins CR, Celli B, Anderson JA. et al. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur Respir J 2012; 39: 38-45
  • 96 Almagro P, Hernandez C, Martinez-Cambor P. et al. Seasonality, ambient temperatures and hospitalizations for acute exacerbation of COPD: a population-based study in a metropolitan area. Int J Chron Obstruct Pulmon Dis 2015; 10: 899-908
  • 97 Peacock JL, Anderson HR, Bremner SA. et al. Outdoor air pollution and respiratory health in patients with COPD. Thorax 2011; 66: 591-596
  • 98 DeVries R, Kriebel D, Sama S. Low level air pollution and exacerbation of existing copd: a case crossover analysis. Environ Health 2016; 15: 98
  • 99 Miravitlles M, D'Urzo A, Singh D. et al. Pharmacological strategies to reduce exacerbation risk in COPD: a narrative review. Respir Res 2016; 17: 112
  • 100 Tashkin DP, Celli B, Senn S. et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008; 359: 1543-1554
  • 101 Vogelmeier C, Hederer B, Glaab T. et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 2011; 364: 1093-1103
  • 102 Busch R, Han MK, Bowler RP. et al. Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort. BMC Pulm Med 2016; 16: 28
  • 103 Stone IS, Barnes NC, James W-Y. et al. Lung Deflation and Cardiovascular Structure and Function in COPD: A Randomized Controlled Trial. Am J Respir Crit Care Med 2016; 193: 717-726
  • 104 Wedzicha JA, Banerji D, Vogelmeier CF. Indacaterol-Glycopyrronium for COPD. N Engl J Med 2016; 375: 899-900
  • 105 Hatzelmann A, Morcillo EJ, Lungarella G. et al. The preclinical pharmacology of roflumilast--a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2010; 23: 235-256
  • 106 Calverley PMA, Rabe KF, Goehring U-M. et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 2009; 374: 685-694
  • 107 Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2008; 3: 331-350
  • 108 Albert RK, Connett J, Bailey WC. et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365: 689-698
  • 109 Brusselle GG, Vanderstichele C, Jordens P. et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax 2013; 68: 322-329
  • 110 Bhatt SP, Wells JM, Kinney GL. et al. beta-Blockers are associated with a reduction in COPD exacerbations. Thorax 2016; 71: 8-14
  • 111 Chang CL, Robinson SC, Mills GD. et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011; 66: 764-768
  • 112 Hawkins NM, Huang Z, Pieper KS. et al. Chronic obstructive pulmonary disease is an independent predictor of death but not atherosclerotic events in patients with myocardial infarction: analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). Eur J Heart Fail 2009; 11: 292-298
  • 113 Fexer J, Donnachie E, Schneider A. et al. The effects of theophylline on hospital admissions and exacerbations in COPD patients: audit data from the Bavarian disease management program. Dtsch Arztebl Int 2014; 111: 293-300
  • 114 Hurst JR, Vestbo J, Anzueto A. et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 2010; 363: 1128-1138
  • 115 Amatngalim GD, van Wijck Y, de Mooij-Eijk Y. et al. Basal cells contribute to innate immunity of the airway epithelium through production of the antimicrobial protein RNase 7. J Immunol 2015; 194: 3340-3350
  • 116 Vogelmeier C, Buhl R, Criee CP. et al. Guidelines for the diagnosis and therapy of COPD issued by Deutsche Atemwegsliga and Deutsche Gesellschaft fur Pneumologie und Beatmungsmedizin. Pneumologie 2007; 61: e1-40
  • 117 Bonten TN, Kasteleyn MJ, Taube C. et al. The clinical management of COPD exacerbations. An update. Expert Rev Clin Pharmacol 2016; 9: 165-167
  • 118 Leuppi JD, Schuetz P, Bingisser R. et al. Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease. The REDUCE randomized clinical trial. JAMA 2013; 309: 2223-2231
  • 119 Kiser TH, Allen RR, Valuck RJ. et al. Outcomes associated with corticosteroid dosage in critically ill patients with acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189: 1052-1064
  • 120 Bafadhel M, Greening NJ, Harvey-Dunstan TC. et al. Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest 2016; 150: 320-328
  • 121 Wilson R, Sethi S, Anzueto A. et al. Antibiotics for treatment and prevention of exacerbations of chronic obstructive pulmonary disease. J Infect 2013; 67: 497-515
  • 122 Laue J, Reierth E, Melbye H. When should acute exacerbations of COPD be treated with systemic corticosteroids and antibiotics in primary care. A systematic review of current COPD guidelines. NPJ Prim Care Respir Med 2015; 25: 15002
  • 123 Seymour JM, Spruit MA, Hopkinson NS. et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J 2010; 36: 81-88
  • 124 Gayan-Ramirez G, Decramer M. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol 2013; 114: 1291-1299
  • 125 Vilaro J, Ramirez-Sarmiento A, Martinez-Llorens JM. et al. Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations. Respir Med 2010; 104: 1896-1902
  • 126 Kirsten DK, Taube C, Lehnigk B. et al. Exercise training improves recovery in patients with COPD after an acute exacerbation. Respir Med 1998; 92: 1191-1198
  • 127 Behnke M, Taube C, Kirsten D. et al. Home-based exercise is capable of preserving hospital-based improvements in severe chronic obstructive pulmonary disease. Respir Med 2000; 94: 1184-1191
  • 128 Troosters T, Probst VS, Crul T. et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181: 1072-1077
  • 129 Greulich T, Nell C, Koepke J. et al. Benefits of whole body vibration training in patients hospitalised for COPD exacerbations – a randomized clinical trial. BMC Pulm Med 2014; 14: 60
  • 130 Puhan MA, Gimeno-Santos E, Scharplatz M. et al. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011; 10: CD005305
  • 131 Vanfleteren LE, Spruit MA, Groenen M. et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187: 728-735
  • 132 Divo M, Cote C, de Torres JP. et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 155-161
  • 133 van Boven JF, Roman-Rodriguez M, Palmer JF. et al. Comorbidome, Pattern, and Impact of Asthma-COPD Overlap Syndrome in Real Life. Chest 2016; 149: 1011-1020
  • 134 Beghe B, Verduri A, Roca M. et al. Exacerbation of respiratory symptoms in COPD patients may not be exacerbations of COPD. Eur Respir J 2013; 41: 993-995
  • 135 Lee PH, Kok VC, Chou PL. et al. Risk and clinical predictors of osteoporotic fracture in East Asian patients with chronic obstructive pulmonary disease. A population-based cohort study. PeerJ 2016; 4: e2634
  • 136 Mehta J, Walsh EE, Mahadevia PJ. et al. Risk factors for respiratory syncytial virus illness among patients with chronic obstructive pulmonary disease. COPD 2013; 10: 293-299
  • 137 Portegies ML, Lahousse L, Joos GF. et al. Chronic Obstructive Pulmonary Disease and the Risk of Stroke. The Rotterdam Study. Am J Respir Crit Care Med 2016; 193: 251-258
  • 138 Lahousse L, Niemeijer MN, van den Berg ME. et al. Chronic obstructive pulmonary disease and sudden cardiac death. The Rotterdam study. Eur Heart J 2015; 36: 1754-1761
  • 139 Wells JM, Morrison JB, Bhatt SP. et al. Pulmonary Artery Enlargement Is Associated With Cardiac Injury During Severe Exacerbations of COPD. Chest 2016; 149: 1197-1204
  • 140 McAllister DA, Maclay JD, Mills NL. et al. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J 2012; 39: 1097-1103
  • 141 Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol 2007; 50: 2173-2195
  • 142 Pizarro C, Ahmadzadehfar H, Essler M. et al. Volumetric and scintigraphic changes following endoscopic lung volume reduction. Eur Respir J 2015; 45: 262-265
  • 143 Smith MC, Wrobel JP. Epidemiology and clinical impact of major comorbidities in patients with COPD. Int J Chron Obstruct Pulmon Dis 2014; 9: 871-888
  • 144 Griffo R, Spanevello A, Temporelli PL. et al. Frequent coexistence of chronic heart failure and chronic obstructive pulmonary disease in respiratory and cardiac outpatients. Evidence from SUSPIRIUM, a multicentre Italian survey. Eur J Prev Cardiol 2017; 24: 567-576
  • 145 Guder G, Rutten FH. Comorbidity of heart failure and chronic obstructive pulmonary disease. More than coincidence. Curr Heart Fail Rep 2014; 11: 337-346
  • 146 Alosco ML, Hayes SM. Structural brain alterations in heart failure. A review of the literature and implications for risk of Alzheimer's disease. Heart Fail Rev 2015; 20: 561-571
  • 147 Oliveira MF, Alencar MC, Arbex F. et al. Effects of heart failure on cerebral blood flow in COPD. Rest and exercise. Respir Physiol Neurobiol 2016; 221: 41-48
  • 148 Rorth R, Wong C, Kragholm K. et al. Return to the Workforce After First Hospitalization for Heart Failure. A Danish Nationwide Cohort Study. Circulation 2016; 134: 999-1009
  • 149 Canepa M, Temporelli PL, Rossi A. et al. Prevalence and Prognostic Impact of Chronic Obstructive Pulmonary Disease in Patients with Chronic Heart Failure. Data from the GISSI-HF Trial. Cardiology 2017; 136: 128-137
  • 150 Poon C-S, Tin C, Song G. Submissive hypercapnia. Why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216: 86-93
  • 151 Krahnke JS, Abraham WT, Adamson PB. et al. Heart failure and respiratory hospitalizations are reduced in patients with heart failure and chronic obstructive pulmonary disease with the use of an implantable pulmonary artery pressure monitoring device. J Card Fail 2015; 21: 240-249
  • 152 Spruit MA, Singh SJ, Garvey C. et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188: 64
  • 153 Waschki B, Kirsten A, Holz O. et al. Physical activity is the strongest predictor of all – cause mortality in patients with COPD: a prospective cohort study. Chest 2011; 140: 331-342
  • 154 Garcia-Aymerich J, Lange P, Benet M. et al. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease. A population based cohort study. Thorax 2006; 61: 772-778
  • 155 Puhan MA, Gimeno-Santos E, Cates CJ. et al. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016; 12: CD005305
  • 156 McNaughton A, Weatherall M, Williams M. et al. Sing Your Lungs Out – a community singing group for chronic obstructive pulmonary disease. A 1-year pilot study. BMJ Open 2017; 7: e014151
  • 157 Schweickert WD, Pohlman MC, Pohlman AS. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients. A randomised controlled trial. Lancet 2009; 373: 1874-1882
  • 158 Boeselt T, Nell C, Kehr K. et al. Whole-body vibration therapy in intensive care patients. A feasibility and safety study. J Rehabil Med 2016; 48: 316-321
  • 159 Segers J, Hermans G, Bruyninckx F. et al. Feasibility of neuromuscular electrical stimulation in critically ill patients. J Crit Care 2014; 29: 1082-1088
  • 160 Smith BK, Gabrielli A, Davenport PW. et al. Effect of training on inspiratory load compensation in weaned and unweaned mechanically ventilated ICU patients. Respir Care 2014; 59: 22-31
  • 161 Greening NJ, Williams JEA, Hussain SF. et al. An early rehabilitation intervention to enhance recovery during hospital admission for an exacerbation of chronic respiratory disease. Randomised controlled trial. BMJ 2014; 349: g4315
  • 162 Man WD, Puhan MA, Harrison SL. et al. Pulmonary rehabilitation and severe exacerbations of COPD. Solution or white elephant?. ERJ Open Res 2015; DOI: 10.1183/23120541.00050-2015.
  • 163 Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 2011; 8: 184-187
  • 164 Tomczyk S, Bennett NM, Stoecker C. et al. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged /= 65 years. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 2014; 63: 822-825
  • 165 Sehatzadeh S. Influenza and pneumococcal vaccinations for patients with chronic obstructive pulmonary disease (COPD). An evidence-based review. Ont Health Technol Assess Ser 2012; 12: 1-64
  • 166 Prescott E, Almdal T, Mikkelsen KL. et al. Prognostic value of weight change in chronic obstructive pulmonary disease. Results from the Copenhagen City Heart Study. Eur Respir J 2002; 20: 539-544
  • 167 Schols AM, Ferreira IM, Franssen FM. et al. Nutritional assessment and therapy in COPD. A European Respiratory Society statement. Eur Respir J 2014; 44: 1504-1520
  • 168 Ferreira IM, Brooks D, White J. et al. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12: CD000998
  • 169 Hanson C, Sayles H, Nordgren T. et al. Fish intake and pulmonary outcomes in COPDGene. Eur Respir J 2016; 48: PA1144
  • 170 Bellone A, Spagnolatti L, Massobrio M. et al. Short-term effects of expiration under positive pressure in patients with acute exacerbation of chronic obstructive pulmonary disease and mild acidosis requiring non-invasive positive pressure ventilation. Intensive Care Med 2002; 28: 581-585
  • 171 Gosselink R, de Vos J, van den Heuvel SP. et al. Impact of inspiratory muscle training in patients with COPD: what is the evidence?. Eur Respir J 2011; 37: 416-425
  • 172 Neves LF, Reis MH, Plentz RD. et al. Expiratory and expiratory plus inspiratory muscle training improves respiratory muscle strength in subjects with COPD. Systematic review. Respir Care 2014; 59: 1381-1388
  • 173 Buchman AS, Boyle PA, Wilson RS. et al. Respiratory muscle strength predicts decline in mobility in older persons. Neuroepidemiology 2008; 31: 174-180
  • 174 Dellweg D, Reissig K, Hoehn E. et al. Inspiratory muscle training during rehabilitation in successfully weaned hypercapnic patients with COPD. Respir Med 2017; 123: 116-123
  • 175 Zwerink M, Brusse-Keizer M, van der Valk PD. et al. Self management for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014; DOI: 10.1002/14651858.CD002990.pub3.