Planta Med 2017; 83(12/13): 977-984
DOI: 10.1055/s-0043-105390
Reviews
Georg Thieme Verlag KG Stuttgart · New York

New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides[*]

Robert Fürst
Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt/Main
,
Ilse Zündorf
Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt/Main
,
Theo Dingermann
Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt/Main
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 27. Januar 2017
revised 20. Februar 2017

accepted 02. März 2017

Publikationsdatum:
15. März 2017 (online)

Abstract

In the 19th century, cardio-active steroid glycosides, shortly cardiac glycosides, were scientifically established as drugs against heart failure. Their in vivo, cellular, and molecular actions as well as their predominant target, Na+-K+-ATPase, have been comprehensively investigated in the 20th century and the discovery of endogenous cardiac glycosides has fostered this research field. In the last years, however, results from clinical trials and meta-analyses have questioned their therapeutic value due to efficacy and safety issues. This has led to a considerable decline of their usage. Beyond the cardiovascular system, cardiac glycosides have been increasingly recognized as antitumor compounds and Na+-K+-ATPase has evolved into a promising drug target in oncology. A wealth of review articles exists that intensively discuss these topics. Surprisingly, the anti-inflammatory actions of cardiac glycosides, which were discovered in the 1960s, have so far hardly been perceived and have not yet been summarized. This review provides an overview of the in vivo and in vitro actions of cardiac glycosides on inflammatory processes and of the signaling mechanisms responsible for these effects: cardiac glycosides have been found to decrease inflammatory symptoms in different animal models of acute and chronic inflammation. Regarding the underlying mechanisms most research has focused on leukocytes. In these cells, cardiac glycosides primarily inhibit cell proliferation and the secretion of proinflammatory cytokines.

* Part of the special issue dedicated to Professor Max Wichtl.


 
  • References

  • 1 Greeff K, Schadewaldt H. Introduction and Remarks on the History of cardiac Glycosides. In: Greeff K. ed. Cardiac Glycosides. Berlin, Heidelberg: Springer; 1981: 1-12
  • 2 Lampe D, Lampe H, Berwing K, Parsi RA, Mai I. On the problem of optimum digitlaization in man. Int J Clin Pharmacol Biopharm 1978; 16: 380-383
  • 3 Regal W, Nanut M. Von der Geheimrezeptur zum Herzglykosid. Available at. http://www.springermedizin.at/artikel/2184-von-der-geheimrezeptur-zum-herzglykosid Accessed January 5, 2017
  • 4 Repke K, Portius HJ. Comparison of the effect of steroid lactones on the transport-ATPase and ion transport of erythrocytes. Folia Haematol Int Mag Klin Morphol Blutforsch 1965; 83: 108-118
  • 5 Ferguson DW, Berg WJ, Sanders JS, Roach PJ, Kempf JS, Kienzle MG. Sympathoinhibitory responses to digitalis glycosides in heart failure patients. Direct evidence from sympathetic neural recordings. Circulation 1989; 80: 65-77
  • 6 Haddy FJ. Endogenous digitalis-like factor or factors. N Engl J Med 1987; 316: 621-623
  • 7 Poston L. Endogenous sodium pump inhibitors: a role in essential hypertension?. Clin Sci (Lond) 1987; 72: 647-655
  • 8 Haber E, Haupert jr. GT. The search for a hypothalamic Na+,K+-ATPase inhibitor. Hypertension 1987; 9: 315-324
  • 9 Goto A, Yamada K, Ishii M, Yoshioka M, Ishiguro T, Eguchi C, Sugimoto T. Purification and characterization of human urine-derived digitalis-like factor. Biochem Biophys Res Commun 1988; 154: 847-853
  • 10 Goto A, Ishiguro T, Yamada K, Ishii M, Yoshioka M, Eguchi C, Shimora M, Sugimoto T. Isolation of a urinary digitalis-like factor indistinguishable from digoxin. Biochem Biophys Res Commun 1990; 173: 1093-1101
  • 11 Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A 1991; 88: 6259-6263
  • 12 Bova S, Blaustein MP, Ludens JH, Harris DW, DuCharme DW, Hamlyn JM. Effects of an endogenous ouabainlike compound on heart and aorta. Hypertension 1991; 17: 944-950
  • 13 Ferrandi M, Manunta P, Balzan S, Hamlyn JM, Bianchi G, Ferrari P. Ouabain-like factor quantification in mammalian tissues and plasma: comparison of two independent assays. Hypertension 1997; 30: 886-896
  • 14 Buckalew VM. Endogenous digitalis-like factors: an overview of the history. Front Endocrinol (Lausanne) 2015; 6: 49
  • 15 Berendes E, Cullen P, Van Aken H, Zidek W, Erren M, Hübschen M, Weber T, Wirtz S, Tepel M, Walter M. Endogenous glycosides in critically ill patients. Crit Care Med 2003; 31: 1331-1337
  • 16 Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA 2003; 289: 871-878
  • 17 Georgiopoulou VV, Kalogeropoulos AP, Giamouzis G, Agha SA, Rashad MA, Waheed S, Laskar S, Smith AL, Butler J. Digoxin therapy does not improve outcomes in patients with advanced heart failure on contemporary medical therapy. Circ Heart Fail 2009; 2: 90-97
  • 18 Freeman JV, Yang J, Sung SH, Hlatky MA, Go AS. Effectiveness and safety of digoxin among contemporary adults with incident systolic heart failure. Circ Cardiovasc Qual Outcomes 2013; 6: 525-533
  • 19 Opie LH. Digitalis, yesterday and today, but not forever. Circ Cardiovasc Qual Outcomes 2013; 6: 511-513
  • 20 Vamos M, Erath JW, Hohnloser SH. Digoxin-associated mortality: a systematic review and meta-analysis of the literature. Eur Heart J 2015; 36: 1831-1838
  • 21 Chaggar PS, Shaw SM, Williams SG. Is foxglove effective in heart failure?. Cardiovasc Ther 2015; 33: 236-241
  • 22 Ziff OJ, Lane DA, Samra M, Griffith M, Kirchhof P, Lip GY, Steeds RP, Townend J, Kotecha D. Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data. BMJ 2015; 351: h4451
  • 23 Shiratori O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gan 1967; 58: 521-528
  • 24 Stenkvist B, Bengtsson E, Eriksson O, Holmquist J, Nordin B, Westman-Naeser S. Cardiac glycosides and breast cancer. Lancet 1979; 1: 563
  • 25 Slingerland M, Cerella C, Guchelaar HJ, Diederich M, Gelderblom H. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest New Drugs 2013; 31: 1087-1094
  • 26 Alevizopoulos K, Calogeropoulou T, Lang F, Stournaras C. Na+/K+ ATPase inhibitors in cancer. Curr Drug Targets 2014; 15: 988-1000
  • 27 Calderón-Montaño JM, Burgos-Morón E, Orta ML, Maldonado-Navas D, García-Domínguez I, López-Lázaro M. Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014; 2014: 794930
  • 28 Durlacher CT, Chow K, Chen XW, He ZX, Zhang X, Yang T, Zhou SF. Targeting Na(+)/K(+) -translocating adenosine triphosphatase in cancer treatment. Clin Exp Pharmacol Physiol 2015; 42: 427-443
  • 29 Patel S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother 2016; 84: 1036-1041
  • 30 Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular targets to immunogenic cell death. Biochem Pharmacol 2017; 125: 1-11
  • 31 Lancaster MC, Vegad JL. Suppression of the early inflammatory response in the sheep by strophanthin G. Nature 1967; 213: 840-841
  • 32 De Vasconcelos DI, Leite JA, Carneiro LT, Piuvezam MR, de Lima MR, de Morais LC, Rumjanek VM, Rodrigues-Mascarenhas S. Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators Inflamm 2011; 2011: 912925
  • 33 Leite JA, Alves AK, Galvão JG, Teixeira MP, Cavalcante-Silva LH, Scavone C, Morrot A, Rumjanek VM, Rodrigues-Mascarenhas S. Ouabain modulates zymosan-induced peritonitis in mice. Mediators Inflamm 2015; 2015: 265798
  • 34 Esposito AL. Digoxin disrupts the inflammatory response in experimental pneumococcal pneumonia. J Infect Dis 1985; 152: 14-23
  • 35 Jacob PL, Leite JA, Alves AK, Rodrigues YK, Amorim FM, Neris PL, Oliveira MR, Rodrigues-Mascarenhas S. Immunomodulatory activity of ouabain in Leishmania leishmania amazonensis-infected Swiss mice. Parasitol Res 2013; 112: 1313-1321
  • 36 Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV, Cuesta A, Santori FR, Lafaille JJ, Xu HE, Gin DY, Rastinejad F, Littman DR. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature 2011; 472: 486-490
  • 37 Lee J, Baek S, Lee J, Lee J, Lee DG, Park MK, Cho ML, Park SH, Kwok SK. Digoxin ameliorates autoimmune arthritis via suppression of Th17 differentiation. Int Immunopharmacol 2015; 26: 103-111
  • 38 Hinshaw SJ, Ogbeifun O, Wandu WS, Lyu C, Shi G, Li Y, Qian H, Gery I. Digoxin inhibits induction of experimental autoimmune uveitis in mice, but causes severe retinal degeneration. Invest Ophthalmol Vis Sci 2016; 57: 1441-1447
  • 39 Forshammar J, Block L, Lundborg C, Biber B, Hansson E. Naloxone and ouabain in ultralow concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes. J Biol Chem 2011; 286: 31586-31597
  • 40 Forshammar J, Jörneberg P, Björklund U, Westerlund A, Lundborg C, Biber B, Hansson E. Anti-inflammatory substances can influence some glial cell types but not others. Brain Res 2013; 1539: 34-40
  • 41 Kinoshita PF, Yshii LM, Vasconcelos AR, Orellana AM, Lima Lde S, Davel AP, Rossoni LV, Kawamoto EM, Scavone C. Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J Neuroinflammation 2014; 11: 218
  • 42 Srivastava M, Eidelman O, Zhang J, Paweletz C, Caohuy H, Yang Q, Jacobson KA, Heldman E, Huang W, Jozwik C, Pollard BS, Pollard HB. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc Natl Acad Sci U S A 2004; 101: 7693-7698
  • 43 Yang Q, Huang W, Jozwik C, Lin Y, Glasman M, Caohuy H, Srivastava M, Esposito D, Gillette W, Hartley J, Pollard HB. Cardiac glycosides inhibit TNF-alpha/NF-kappaB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor. Proc Natl Acad Sci U S A 2005; 102: 9631-9636
  • 44 Zeitlin PL, Diener-West M, Callahan KA, Lee S, Talbot jr. CC, Pollard B, Boyle MP, Lechtzin N. Digitoxin for airway inflammation in cystic fibrosis: preliminary assessment of safety, pharmacokinetics, and dose finding. Ann Am Thorac Soc 2017; 14: 220-229
  • 45 Quastel MR, Kaplan JG. Inhibition by ouabain of human lymphocyte transformation induced by phytohaemagglutinin in vitro . Nature 1968; 219: 198-200
  • 46 Quastel MR, Kaplan JG. Lymphocyte stimulation: the effect of ouabain on nucleic acid and protein synthesis. Exp Cell Res 1970; 62: 407-420
  • 47 Takada Y, Matsuo K, Ogura H, Bai L, Toki A, Wang L, Ando M, Kataoka T. Odoroside A and ouabain inhibit Na+/K+-ATPase and prevent NF-kappaB-inducible protein expression by blocking Na+-dependent amino acid transport. Biochem Pharmacol 2009; 78: 1157-1166
  • 48 Szamel M, Somogyi J, Csukás I, Solymosy F. Effect of ouabain on macromolecular synthesis during the cell cycle in mitogen-stimulated human lymphocytes. Biochim Biophys Acta 1980; 633: 347-360
  • 49 Szamel M, Resch K. Inhibition of lymphocyte activation by ouabain. Interference with the early activation of membrane phospholipid metabolism. Biochim Biophys Acta 1981; 647: 297-301
  • 50 Pires V, Harab RC, Olej B, Rumjanek VM. Ouabain effects on activated lymphocytes: augmentation of CD25 expression on TPA-stimulated cells and of CD69 on PHA-and TPA-stimulated cells. Int J Immunopharmacol 1997; 19: 143-148
  • 51 Stoeck M, Northoff H, Resch K. Inhibition of mitogen-induced lymphocyte proliferation by ouabain: interference with interleukin 2 production and interleukin 2 action. J Immunol 1983; 131: 1433-1437
  • 52 Lillehoj H, Shevach EM. A comparison of the effects of cyclosporin A, dexamethasone, and ouabain on the interleukin-2 cascade. J Immunopharmacol 1985; 7: 267-284
  • 53 Dornand J, Favero J, Bonnafous JC, Mani JC. Mechanism whereby ouabain inhibits human T lymphocyte activation: effect on the interleukin 2 pathway. Immunobiology 1986; 171: 436-450
  • 54 Falciola J, Volet B, Anner RM, Moosmayer M, Lacotte D, Anner BM. Role of cell membrane Na,K-ATPase for survival of human lymphocytes in vitro . Biosci Rep 1994; 14: 189-204
  • 55 Szamel M, Schneider S, Resch K. Functional interrelationship between (Na+ + K+)-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes. J Biol Chem 1981; 256: 9198-9204
  • 56 Rodrigues-Mascarenhas S, Bloise FF, Moscat J, Rumjanek VM. Ouabain inhibits p38 activation in thymocytes. Cell Biol Int 2008; 32: 1323-1328
  • 57 Rodrigues-Mascarenhas S, Echevarria-Lima J, Fernandes dos Santos N, Rumjanek VM. CD69 expression induced by thapsigargin, phorbol ester and ouabain on thymocytes is dependent on external Ca2+ entry. Life Sci 2003; 73: 1037-1051
  • 58 Mann CL, Bortner CD, Jewell CM, Cidlowski JA. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na(+)/K(+)-adenosine triphosphatase. Endocrinology 2001; 142: 5059-5068
  • 59 Rodrigues-Mascarenhas S, dos Santos NF, Rumjanek VM. Synergistic effect between ouabain and glucocorticoids for the induction of thymic atrophy. Biosci Rep 2006; 26: 159-169
  • 60 Milthorp P, Quastel MR, Kaplan JG, Vogelfanger IJ. Effect of the inhibition of cation transport by ouabain on plaque formation by splenic lymphoid cells: time course and dose response. Cell Immunol 1974; 14: 128-133
  • 61 Maubach K, Foey AD, Hall ND. Impaired activity of thiol-dependent ATPases in rheumatoid mononuclear cell membranes. Agents Actions 1993; 39 (Spec No): C107-C109
  • 62 Foey AD, Crawford A, Hall ND. Modulation of cytokine production by human mononuclear cells following impairment of Na, K-ATPase activity. Biochim Biophys Acta 1997; 1355: 43-49
  • 63 Matsumori A, Ono K, Nishio R, Igata H, Shioi T, Matsui S, Furukawa Y, Iwasaki A, Nose Y, Sasayama S. Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Circulation 1997; 96: 1501-1506
  • 64 Matsumori A, Ono K, Nishio R, Nose Y, Sasayama S. Amlodipine inhibits the production of cytokines induced by ouabain. Cytokine 2000; 12: 294-297
  • 65 Ihenetu K, Espinosa R, de Leon R, Planas G, Perez-Pinero A, Waldbeser L. Digoxin and digoxin-like immunoreactive factors (DLIF) modulate the release of pro-inflammatory cytokines. Inflamm Res 2008; 57: 519-523
  • 66 Sowa G, Przewłocki R. Ouabain enhances the lipopolysaccharide-induced nitric oxide production by rat peritoneal macrophages. Immunopharmacology 1997; 36: 95-100
  • 67 Valente RC, Nascimento CR, Araujo EG, Rumjanek VM. mCD14 expression in human monocytes is downregulated by ouabain via transactivation of epithelial growth factor receptor and activation of p38 mitogen-activated protein kinase. Neuroimmunomodulation 2009; 16: 228-236
  • 68 Teixeira MP, Rumjanek VM. Ouabain affects the expression of activation markers, cytokine production, and endocytosis of human monocytes. Mediators Inflamm 2014; 2014: 760368
  • 69 Ward PA, Becker EL. Potassium reversible inhibition of leukotaxis by ouabain. Life Sci 1970; 9: 355-360
  • 70 De Moraes VL, Olej B, de la Rocque L, Rumjanek VM. Lack of sensitivity to ouabain in natural killer activity. FASEB J 1989; 3: 2425-2429
  • 71 Nascimento CR, Valente RC, Echevarria-Lima J, Fontes CF, de Araujo-Martins L, Araujo EG, Rumjanek VM. The influence of ouabain on human dendritic cells maturation. Mediators Inflamm 2014; 2014: 494956
  • 72 Bereta J, Cohen MC, Bereta M. Stimulatory effect of ouabain on VCAM-1 and iNOS expression in murine endothelial cells: involvement of NF-kappa B. FEBS Lett 1995; 377: 21-25
  • 73 Jagielska J, Salguero G, Schieffer B, Bavendiek U. Digitoxin elicits anti-inflammatory and vasoprotective properties in endothelial cells: Therapeutic implications for the treatment of atherosclerosis?. Atherosclerosis 2009; 206: 390-396
  • 74 Goto A, Yamada K, Nagoshi H, Terano Y, Omata M. Stress-induced elevation of ouabainlike compound in rat plasma and adrenal. Hypertension 1995; 26: 1173-1176
  • 75 Gottlieb SS, Rogowski AC, Weinberg M, Krichten CM, Hamilton BP, Hamlyn JM. Elevated concentrations of endogenous ouabain in patients with congestive heart failure. Circulation 1992; 86: 420-425