Fortschr Neurol Psychiatr 2017; 85(05): 260-269
DOI: 10.1055/s-0043-105389
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Fatigue bei Multipler Sklerose: Neuronale Korrelate und Möglichkeiten nicht-invasiver Hirnstimulation mit tDCS

Multiple sclerosis fatigue, its neural correlates, and its modulation with tDCS
Samar S. Ayache
1   EA 4391 Excitabilité Nerveuse et Thérapeutique, Université Paris-Est, Créteil, Frankreich
2   Service de Physiologie, Funktionelle Untersuchungen, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, Frankreich
3   Neurology Division, Lebanese American University Medical Center – Rizk Hospital (LAUMC-RH), Beirut, Libanon
,
Moussa A. Chalah
1   EA 4391 Excitabilité Nerveuse et Thérapeutique, Université Paris-Est, Créteil, Frankreich
2   Service de Physiologie, Funktionelle Untersuchungen, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, Frankreich
,
Tania Kümpfel
4   Institut für klinische Neuroimmunologie, Klinikum der Universität München
,
Frank Padberg
5   Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität München
,
Jean-Pascal Lefaucheur
1   EA 4391 Excitabilité Nerveuse et Thérapeutique, Université Paris-Est, Créteil, Frankreich
2   Service de Physiologie, Funktionelle Untersuchungen, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, Frankreich
,
Ulrich Palm
5   Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. Mai 2017 (online)

Zusammenfassung

Multiple Sklerose (MS) ist eine chronisch-progressive inflammatorische Erkrankung des zentralen Nervensystems und die häufigste Ursache nicht-traumatischer Funktionseinschränkung bei jungen Erwachsenen. Fatigue ist ein häufiges Symptom, das von einer Mehrzahl der MS-Patienten während des Krankheitsverlaufs berichtet wird und ihre Lebensqualität erheblich einschränkt. Trotz ihrer häufigen Prävalenz und ihrer Bedeutung sind die zugrundeliegenden pathophysiologischen Mechanismen nicht gut untersucht. Fatigue wird üblicherweise in ein primäre Fatigue mit aus der Krankheit selbst resultierenden pathologischen Veränderungen und in eine sekundäre Fatigue als Folge von Krankheitssymptomen, komorbiden Schlafstörungen, affektiven Störungen und Nebenwirkungen von Medikamenten eingeteilt. Erkenntnisse aus radiologischen, neurophysiologischen und endokrinologischen Untersuchungen führten zu Überlegungen, dass es eine Verbindung zwischen den Symptomen der Fatigue und strukturellen bzw. funktionellen Veränderungen in verschiedenen neuronalen Netzwerkstrukturen gibt. Über die letzten Jahre konnte gezeigt werden, dass verschiedene nichtinvasive Hirnstimulationsverfahren neuronale Netzwerkstrukturen modulieren können, insbesondere für die transkranielle Gleichstromstimulation (tDCS) konnten in den letzten Jahren übereinstimmende Ergebnisse nachgewiesen werden, wenngleich die Datenlage aufgrund des Pilotcharakters der Studien noch dünn ist. In dieser Übersichtsarbeit werden die neuronalen Korrelate der MS und die Rationale für den Einsatz der tDCS in der Behandlung der Fatigue dargestellt.

Abstract

Multiple sclerosis (MS) is a chronic progressive and inflammatory disease of the central nervous system and causes high rates of non-traumatic disability in young adults. Fatigue is frequently reported by a major part of patients during the disease course and dramatically increases the burden of illness. Despite the high prevalence of fatigue and its enormous impact on quality of life, its pathophysiological mechanisms are still unclear. Its etiology is multifactorial and complex, and is usually classified into ‘primary’ fatigue resulting from the pathological brain changes versus ‘secondary’ fatigue following disease symptoms, sleep disturbances, mood disorders, and side effects of medication. Hypotheses concerning the pathophysiology of this symptom are based on radiological, physiological, and endocrine data. It has been suggested that fatigue refers to structural and functional changes in a variety of neuronal networks. Over the past years, non-invasive brain stimulation methods were used to modulate brain function, especially transcranial direct current stimulation (tDCS) has proven to impact neuronal connectivity; however evidence is still sparse due to the pilot character of the studies. In this review we aim at discussing the neuronal correlates of fatigue and the potential influence of tDCS in the modulation of the symptoms.

 
  • Literatur

  • 1 Noseworthy JH, Lucchinetti C, Rodriguez M. et al. Multiple sclerosis. N Engl J Med 2000; 343: 938-952
  • 2 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372: 1502-1517
  • 3 Pugliatti M, Rosati G, Carton H. et al. The epidemiology of multiple sclerosis in Europe. Eur J Neurol 2006; 13: 700-722
  • 4 Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 2014; 89: 225-240
  • 5 Krupp LB, Alvarez LA, LaRocca NG. et al. Fatigue in multiple sclerosis. Arch Neurol 1988; 45: 435-437
  • 6 Janardhan V, Bakshi R. Quality of life in patients with multiple sclerosis: the impact of fatigue and depression. J Neurol Sci 2002; 205: 51-58
  • 7 Merkelbach S, Sittinger H, Koenig J. Is there a differential impact of fatigue and physical disability on quality of life in multiple sclerosis?. J Nerv Ment Dis 2002; 190: 388-393
  • 8 Giovannoni G. Multiple sclerosis related fatigue. J Neurol Neurosurg Psychiatry 2006; 77: 2-3
  • 9 Induruwa I, Constantinescu CS, Gran B. Fatigue in multiple sclerosis – a brief review. J Neurol Sci 2012; 323: 9-15
  • 10 Bakshi R, Shaikh ZA, Miletich RS. et al. Fatigue in multiple sclerosis and its relationship to depression and neurologic disability. Mult Scler 2000; 6: 181-185
  • 11 Lerdal A, Celius EG, Krupp L, Dahl AA. A prospective study of patterns of fatigue in multiple sclerosis. Eur J Neurol 2007; 14: 1338-1343
  • 12 Kos D, Kerckhofs E, Nagels G. et al. Origin of fatigue in multiple sclerosis: review of the literature. Neurorehabil Neural Repair 2008; 22: 91-100
  • 13 Comi G, Leocani L, Rossi P. et al. Physiopathology and treatment of fatigue in multiple sclerosis. J Neurol 2001; 248: 174-179
  • 14 Morris ME, Cantwell C, Vowels L. et al. Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis. J Neurol Neurosurg Psychiatry 2002; 72: 361-365
  • 15 Mills RJ, Young CA. A medical definition of fatigue in multiple sclerosis. QJM 2008; 101: 49-60
  • 16 Krupp LB, Serafin DJ, Christodoulou C. Multiple sclerosis associated fatigue. Expert Rev Neurother 2010; 10: 1437-1447
  • 17 Bakshi R. Fatigue associated with multiple sclerosis: diagnosis, impact and management. Mult Scler 2003; 9: 219-227
  • 18 Bol Y, Smolders J, Duits A. et al. Fatigue and heat sensitivity in patients with multiple sclerosis. Acta Neurol Scand 2012; 126: 384-389
  • 19 Leavitt VM, Sumowski JF, Chiaravalloti N. et al. Warmer outdoor temperature is associated with worse cognitive status in multiple sclerosis. Neurology 2012; 78: 964-968
  • 20 Fisk JD, Pontefract A, Ritvo PG. et al. The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 1994; 21: 9-14
  • 21 Colosimo C, Millefiorini E, Grasso MG. et al. Fatigue in multiple sclerosis is associated with specific clinical features. Acta Neurol Scand 1995; 92: 353-355
  • 22 Lobentanz IS, Asenbaum S, Vass K. et al. Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol Scand 2004; 110: 6-13
  • 23 Flensner G, Ek AC, Landtblom AM. et al. Fatigue in relation to perceived health: people with multiple sclerosis compared with people in the general population. Scand J Caring Sci 2008; 22: 391-400
  • 24 MacAllister WS, Krupp LB. Multiple sclerosis-related fatigue. Phys Med Rehabil Clin N Am 2005; 16: 483-502
  • 25 Braley TJ, Chervin RD. Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep 2000; 33: 1061-1067
  • 26 Vucic S, Burke D, Kiernan MC. Fatigue in multiple sclerosis: Mechanisms and management. Clin Neurophysiol 2010; 121: 809-817
  • 27 Palm U, Ayache SS, Padberg F. et al. Non-invasive brain stimulation therapy in multiple sclerosis: a review of tDCS, rTMS and ECT results. Brain Stimul 2014; 7: 849-854
  • 28 Patejdl R, Penner IK, Noack TK. et al. Fatigue bei Patienten mit Multipler Sklerose – Pathogenese, Klinik, Diagnostik und Therapie. Fortschr Neurol Psychiatr 2015; 83: 211-220
  • 29 Veauthier C, Paul F. Therapie der Fatigue bei Multipler Sklerose. Nervenarzt 2016; 87: 1310-1321
  • 30 van der Werf SP, Jongen PJ, Lycklama à Nijeholt GJ. et al. Fatigue in multiple sclerosis: interrelations between fatigue complaints, cerebral MRI abnormalities and neurological disability. J Neurol Sci 1998; 160: 164-170
  • 31 Möller A, Wiedemann G, Rohde U. et al. Correlates of cognitive impairment and depressive mood disorder in multiple sclerosis. Acta Psychiatr Scand 1994; 89: 117-121
  • 32 Hoepner R, Faissner S, Salmen A. et al. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J Cent Nerv Syst Dis 2014; 6: 41-49
  • 33 Wessely S. The epidemiology of chronic fatigue syndrome. Epidemiol Psichiatr Soc 1998; 7: 10-24
  • 34 Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81: 1725-1789
  • 35 Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci 2000; 179: 34-42
  • 36 Benedict RH, Wahlig E, Bakshi R. et al. Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change. J Neurol Sci 2005; 231: 29-34
  • 37 Zwarts MJ, Bleijenberg G, van Engelen BG. Clinical neurophysiology of fatigue. Clin Neurophysiol 2008; 119: 2-10
  • 38 Claros-Salinas D, Dittmer N, Neumann M. et al. Induction of cognitive fatigue in MS patients through cognitive and physical load. Neuropsychol Rehabil 2013; 23: 182-201
  • 39 Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 2013; 80: 409-416
  • 40 Sepulcre J, Masdeu JC, Goñi J. et al. Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Mult Scler 2009; 15: 337-344
  • 41 Calabrese M, Rinaldi F, Grossi P. et al. Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 2010; 16: 1220-1228
  • 42 Genova HM, Rajagopalan V, DeLuca J. et al. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE 2013; 8: e78811
  • 43 DeLuca J, Genova HM, Hillary FG. et al. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci 2008; 270: 28-39
  • 44 Flachenecker P, Kümpfel T, Kallmann B. et al. Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 2002; 8: 523-526
  • 45 Niepel G, Tench CR, Morgan PS. et al. Deep gray matter and fatigue in MS: a T1 relaxation time study. J Neurol 2006; 253: 896-902
  • 46 Pellicano C, Gallo A, Li X. et al. Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 2010; 67: 447-453
  • 47 Ford H, Trigwell P, Johnson M. The nature of fatigue in multiple sclerosis. J Psychosom Res 1998; 45: 33-38
  • 48 Pittion-Vouyovitch S, Debouverie M, Guillemin F. et al. Fatigue in multiple sclerosis is related to disability, depression and quality of life. J Neurol Sci 2006; 243: 39-45
  • 49 Yaldizli Ö, Glassl S, Sturm D. et al. Fatigue and progression of corpus callosum atrophy in multiple sclerosis. J Neurol 2011; 258: 2199-2205
  • 50 Roelcke U, Kappos L, Lechner-Scott J. et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 1997; 48: 1566-1571
  • 51 Sheean GL, Murray NM, Rothwell JC. et al. An electrophysiological study of the mechanism of fatigue in multiple sclerosis. Brain 1997; 120: 299-315
  • 52 Provinciali L, Ceravolo MG, Bartolini M. et al. A multidimensional assessment of multiple sclerosis: relationships between disability domains. Acta Neurol Scand 1999; 100: 156-162
  • 53 Rocca MA, Gatti R, Agosta F. et al. Influence of task complexity during coordinated hand and foot movements in MS patients with and without fatigue. A kinematic and functional MRI study. J Neurol 2009; 256: 470-482
  • 54 Cruz Gómez ÁJ, Ventura Campos N, Belenguer A. et al. Regional brain atrophy and functional connectivity changes related to fatigue in multiple sclerosis. PLoS ONE 2013; 8: e77914
  • 55 Derache N, Grassiot B, Mézenge F. et al. Fatigue is associated with metabolic and density alterations of cortical and deep gray matter in relapsing-remitting-multiple sclerosis patients at the earlier stage of the disease: A PET/MR study. Mult Scler Relat Disord 2013; 2: 362-369
  • 56 Gobbi C, Rocca MA, Riccitelli G. et al. Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Mult Scler 2014; 20: 192-201
  • 57 Hesse S, Moeller F, Petroff D. et al. Altered serotonin transporter availability in patients with multiple sclerosis. Eur J Nucl Med Mol Imaging 2014; 41: 1640-1641
  • 58 Bakshi R, Miletich RS, Henschel K. et al. Fatigue in multiple sclerosis: cross-sectional correlation with brain MRI findings in 71 patients. Neurology 1999; 53: 1151-1153
  • 59 Gold SM, Krüger S, Ziegler KJ. et al. Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J Neurol Neurosurg Psychiatry 2011; 82: 814-818
  • 60 Pardini M, Bonzano L, Mancardi GL. et al. Frontal networks play a role in fatigue perception in multiple sclerosis. Behav Neurosci 2010; 124: 329-336
  • 61 Specogna I, Casagrande F, Lorusso A. et al. Functional MRI during the execution of a motor task in patients with multiple sclerosis and fatigue. Radiol Med 2012; 117: 1398-1407
  • 62 Codella M, Rocca MA, Colombo B. et al. Cerebral grey matter pathology and fatigue in patients with multiple sclerosis: a preliminary study. J Neurol Sci 2002; 194: 71-74
  • 63 Colombo B, Martinelli-Boneschi F, Rossi P. et al. MRI and motor evoked potential findings in nondisabled multiple sclerosis patients with and without symptoms of fatigue. J Neurol 2000; 247: 506-509
  • 64 Parry A, Clare S, Jenkinson M. et al. White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J Neurol 2002; 249: 1279-1286
  • 65 Téllez N, Alonso J, Río J. et al. The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology 2008; 50: 17-23
  • 66 Inglese M, Park SJ, Johnson G. et al. Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 2007; 64: 196-202
  • 67 Krupp LB, LaRocca NG, Muir-Nash J. et al. The fatigue severity scale. Arch Neurol 1989; 46: 1121-1123
  • 68 Fisk JD, Ritvo PG, Ross L. et al. Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis 1994; 18: S79-S83
  • 69 Smets EM, Garssen B, Bonke B. et al. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 1995; 39: 315-325
  • 70 Leocani L, Colombo B, Magnani G. et al. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement – EEG evidence. Neuroimage 2001; 13: 1186-1192
  • 71 Tartaglia MC, Narayanan S, Arnold DL. Mental fatigue alters the pattern and increases the volume of cerebral activation required for a motor task in multiple sclerosis patients with fatigue. Eur J Neurol 2008; 15: 413-419
  • 72 Riccitelli G, Rocca MA, Forn C. et al. Voxelwise assessment of the regional distribution of damage in the brains of patients with multiple sclerosis and fatigue. Am J Neuroradiol 2011; 32: 874-879
  • 73 Huolman S, Hämäläinen P, Vorobyev V. et al. The effects of rivastigmine on processing speed and brain activation in patients with multiple sclerosis and subjective cognitive fatigue. Mult Scler 2011; 17: 1351-1361
  • 74 Rocca MA, Parisi L, Pagani E. et al. Regional but not global brain damage contributes to fatigue in multiple sclerosis. Radiology 2014; 273: 511-520
  • 75 Yaldizli Ö, Penner IK, Frontzek K. et al. The relationship between total and regional corpus callosum atrophy, cognitive impairment and fatigue in multiple sclerosis patients. Mult Scler 2014; 20: 356-364
  • 76 Gobbi C, Rocca MA, Pagani E. et al. Forceps minor damage and co-occurrence of depression and fatigue in multiple sclerosis. Mult Scler 2014; 20: 1633-1640
  • 77 Andreasen AK, Jakobsen J, Soerensen L. et al. Regional brain atrophy in primary fatigued patients with multiple sclerosis. Neuroimage 2010; 50: 608-615
  • 78 Filippi M, Rocca MA, Colombo B. et al. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 2002; 15: 559-567
  • 79 Rocca MA, Agosta F, Colombo B. et al. fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 2007; 28: 373-382
  • 80 Engström M, Flensner G, Landtblom AM. et al. Thalamo-striato-cortical determinants to fatigue in multiple sclerosis. Brain Behav 2013; 3: 715-728
  • 81 Finke C, Schlichting J, Papazoglou S. et al. Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult Scler 2014; 21: 925-934
  • 82 Hanken K, Eling P, Kastrup A. et al. Integrity of hypothalamic fibers and cognitive fatigue in multiple sclerosis. Mult Scler Relat Disord 2015; 4: 39-46
  • 83 Gottschalk M, Kümpfel T, Flachenecker P. et al. Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis. Arch Neurol 2005; 62: 277-280
  • 84 Zellini F, Niepel G, Tench CR. et al. Hypothalamic involvement assessed by T1 relaxation time in patients with relapsing-remitting multiple sclerosis. Mult Scler 2009; 15: 1442-1449
  • 85 Pardini M, Bonzano L, Bergamino M. et al. Cingulum bundle alterations underlie subjective fatigue in multiple sclerosis. Mult Scler 2015; 21: 442-447
  • 86 Bester M, Lazar M, Petracca M. et al. Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. J Neurol Sci 2013; 330: 61-66
  • 87 Khan F, Amatya B, Galea M. Management of fatigue in persons with multiple sclerosis. Front Neurol 2014; 5: 177
  • 88 Lefaucheur JP, André-Obadia N, Antal A. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125: 2150-2206
  • 89 Lefaucheur JP, Antal A, Ayache SS. et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017; 128: 56-92
  • 90 Nitsche MA, Liebetanz D, Tergau F. et al. Modulation kortikaler Erregbarkeit beim Menschen durch transkranielle Gleichstromstimulation. Nervenarzt 2002; 73: 332-335
  • 91 Palm U, Hasan A, Keeser D. et al. Neue Hirnstimulationsverfahren in der Psychiatrie: Die transkranielle Gleichstromstimulation (tDCS) zur Behandlung der Depression. Nervenheilkunde 2013; 32: 866-876
  • 92 Palm U, Strube W, Bunse T. et al. Transkranielle Gleichstromstimulation in der Psychiatrie. Update 2015. Nervenheilkunde 2015; 34: 1016-1025
  • 93 Park CH, Chang WH, Park JY. et al. Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett 2013; 539: 7-10
  • 94 Keeser D, Meindl T, Bor J. et al. Prefrontal transcranial direct current stimulation (tDCS) changes connectivity of resting-state networks during functional magnetic resonance imaging (fMRI). J Neurosci 2011; 31: 15284-15293
  • 95 Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 2011; 32: 1236-1249
  • 96 Polanía R, Paulus W, Antal A. et al. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 2011; 54: 2287-2296
  • 97 Polanía R, Paulus W, Nitsche MA. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS ONE 2012; 7: e30971
  • 98 Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 2012; 33: 2499-2508
  • 99 Sehm B, Kipping J, Schäfer A. et al. A Comparison between Uni- and Bilateral tDCS effects on functional connectivity of the human motor cortex. Front Hum Neurosci 2013; 7: 183
  • 100 Sehm B, Schäfer A, Kipping J. et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol 2012; 108: 3253-3263
  • 101 Amadi U, Ilie A, Johansen-Berg H. et al. Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. Neuroimage 2014; 88: 155-161
  • 102 Lindenberg R, Nachtigall L, Meinzer M. et al. Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J Neurosci 2013; 33: 9176-9183
  • 103 Meinzer M, Antonenko D, Lindenberg R. et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci 2012; 32: 1859-1866
  • 104 Meinzer M, Lindenberg R, Antonenko D. et al. Anodal transcranial direct current stimulation temporarily reverses age associated cognitive decline and functional brain activity changes. J Neurosci 2013; 33: 12470-12478
  • 105 Rosso C, Valabregue R, Arbizu C. et al. Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimul 2014; 7: 122-129
  • 106 Ferrucci R, Vergari M, Cogiamanian F. et al. Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 2014; 34: 121-127
  • 107 Saiote C, Goldschmidt T, Timäus C. et al. Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. Restor Neurol Neurosci 2014; 32: 423-436
  • 108 Tecchio F, Cancelli A, Cottone C. et al. Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J Neurol 2014; 261: 1552-1558
  • 109 Tecchio F, Cancelli A, Cottone C. et al. Brain plasticity effects of neuromodulation against multiple sclerosis fatigue. Front Neurol 2015; 6: 141
  • 110 Palm U, Chalah MA, Padberg F. et al. Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Restor Neurol Neurosci 2016; 34: 189-199
  • 111 Ayache SS, Palm U, Chalah MA. et al. Prefrontal tDCS decreases pain in patients with multiple sclerosis. Front Neurosci 2016; 10: 147
  • 112 Hanken K, Bosse M, Möhrke K. et al. Counteracting Fatigue in Multiple Sclerosis with Right Parietal Anodal Transcranial Direct Current Stimulation. Front Neurol 2016; 7: 154
  • 113 Chalah MA, Riachi N, Ahdab R. et al. Effects of left DLPFC versus right PPC tDCS on multiple sclerosis fatigue. J Neurol Sci 2017; 372: 131-137
  • 114 Leitner B, Kirsch B, Tschirdewahn J. et al. Standardisierte Anwendung der tDCS bei Depressionen. Positionspapier und Fallbericht. Nervenheilkunde 2016; 35: 703-708
  • 115 Brunoni AR, Moffa AH, Fregni F. et al. Transcranial direct current stimulation for the acute major depressive episode: a meta-analysis of individual patient data. Br J Psychiatry 2016; 208: 522-531