manuelletherapie 2017; 21(02): 88-95
DOI: 10.1055/s-0043-105164
Fachwissen
Elektromyografie
Georg Thieme Verlag KG Stuttgart · New York

Von der Biomechanik zur klinischen Anwendung

From Biomechanics to Clinical Implementation
D. Möller
1   Hochschule Osnabrück, University of Applied Sciences, Fakultät Wirtschafts- und Sozialwissenschaften, Motion Lab
,
K. Backes
2   Velamed GmbH Köln, Science in Motion, Medizintechnik & Biomechanische Konzepte
› Author Affiliations
Further Information

Publication History

02 March 2017

08 March 2017

Publication Date:
19 May 2017 (online)

Zusammenfassung

Biomechanische Analysen sind in der Lage, menschliche Bewegungen valide und umfassend zu erfassen und auszuwerten. Neben den beiden großen Bereichen Kinetik und Kinematik bietet die Elektromyografie (EMG) eine zuverlässige Möglichkeit, die neuromuskuläre Aktivität zu analysieren. Mithilfe des EMG können neuromuskuläre Parameter erhoben werden, die präzise Aussagen beispielsweise zur inter- und intramuskulären Koordination, der Muskelfaserverteilung, des Ermüdungsverhaltens oder des Timings zulassen.

Für verlässliche Daten sind im klinischen Setting jedoch einige wichtige Faktoren zu berücksichtigen. Diese sind von großer Bedeutung und sollten vor einer Analyse beachtet werden. Daneben hängt ein effektiver Einsatz des EMG im klinischen Setting von der Integration in den Clinical-Reasoning-Prozess ab. Die jeweilige individuelle Patientensituation benötigt eine klare Fragestellung. Dazu kann auf ein Ebenenmodell aufgebaut werden, welches die biomechanischen Steuerungsgrößen in der klinischen Anwendung berücksichtigt.

Der Artikel stellt die physiologischen Grundlagen der Elektromyografie, die Einflüsse von Verletzungen auf die Muskelfaserzusammensetzung, die grundlegende Signalverarbeitung und Dateninterpretation, ein Ebenenmodell für die klinische Anwendung sowie Einsatzfelder in der Physiotherapie vor.

Abstract

Biomechanical analysis is able to validly record and comprehensively evaluate human movements. Along with the two major domains of kinetics and kinematics, electromyography (EMG) is a reliable tool for the analysis of neuromuscular activities. EMG may be used to collect neuromuscular parameters that permit precise assessment of, for example, the inter- and intramuscular coordination, muscle fibre distribution, fatigue behavior and timing.

However, some important factors must be considered for reliable data within the clinical setting. These factors have high relevance and should be kept in mind before each analysis. Moreover, the effective use of EMG in a clinical setting depends on its integration into the clinical reasoning process. Each individual patient situation requires a clear objective. For this purpose a multi-level model may be used which incorporates the biomechanical control parameters for clinical application.

This article portrays the physiological basics of electromyography, the influences of injuries on muscle fibre composition, the fundamental signal processing and data interpretation and a multi-level model for the clinical application as well as for operational application in physiotherapy.

 
  • Literatur

  • 1 Andersen JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 2000; 23: 1095-1104
  • 2 Andersen LL, Andersen JL, Magnusson SP. et al. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. Journal of Applied Physiology 2005; 99: 87-94
  • 3 Basmajian JV, Luca CJD. Muscles Alive: Their Functions Revealed by Electromyography. Philadelphia: Williams & Wilkins; 1985
  • 4 Brage K, Ris I, Falla D. et al. Pain education combined with neck- and aerobic training is more effective at relieving chronic neck pain than pain education alone – A preliminary randomized controlled trial. Man Ther 2015; 20: 686-693
  • 5 Hermens HJ, Freriks B, Disselhorst-Klug C. et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000; 10: 361-374
  • 6 Hodges PW, Tucker K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain 2011; 152: S 90-S 98
  • 7 Hogrel JY, Duchêne J, Marini JF. Variability of some SEMG parameter estimates with electrode location. J Electromyogr Kinesiol 1998; 8: 305-315
  • 8 Jones MA, Rivett DA. Clinical Reasoning for Manual Therapists. Oxford: Elsevier; 2003
  • 9 Khalil TM, Goldberg ML, Asfour SS. et al. Acceptable maximum effort (AME). A psychophysical measure of strength in back pain patients. Spine 1987; 12: 372-376
  • 10 Konrad P. EMG-FIBEL. Eine praxisorientierte Einführung in die kinesiologische Elektromyographie. Scottsdale: Noraxon; 2005
  • 11 Krainski F, Hastings JL, Heinicke K. et al. The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest. J Appl Physiol 2014; 116: 1569-1581
  • 12 Laube W. Sensomotorisches System: Physiologisches Detailwissen für Physiotherapeuten. Stuttgart: Thieme; 2009
  • 13 Lomond KV, Henry SM, Hitt JR. et al. Altered postural responses persist following physical therapy of general versus specific trunk exercises in people with low back pain. Man Ther 2014; 19: 425-432
  • 14 Packer AC, Pires PF, Dibai-Filho AV. et al. Effect of upper thoracic manipulation on mouth opening and electromyographic activity of masticatory muscles in women with temporomandibular disorder: a randomized clinical trial. J Manipulative Physiol Ther 2015; 38: 253-261
  • 15 Picquet F, Falempin M. Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus. Exp Neurol 2003; 182: 186-194
  • 16 Pires PF, Packer AC, Dibai-Filho AV. et al. Immediate and Short-Term Effects of Upper Thoracic Manipulation on Myoelectric Activity of Sternocleidomastoid Muscles in Young Women with Chronic Neck Pain: A Randomized Blind Clinical Trial. J Manipulative Physiol Ther 2015; 38: 555-563
  • 17 Rendos NK, Heredia Vargas HM, Alipio TC. et al. Differences in Muscle Activity during Cable Resistance Training Are Influenced by Variations in Handle Types. J Strength Cond Res 2016; 30: 2001-2009
  • 18 Samaan MA, Hoch MC, Ringleb SI. et al. Isolated hamstrings fatigue alters hip and knee joint coordination during a cutting manoeuver. J Appl Biomech 2015; 31: 102-110
  • 19 Schiaffino S, Reggiani C. Myosin isoforms in mammalian skeletal muscle. Journal of Applied Physiology 1994; 77: 493-501
  • 20 Soer R, Poels BJJ, Geertzen JHB. et al. A comparison of two lifting assessment approaches in patients with chronic low back pain. J Occup Rehabil 2006; 16: 639-646
  • 21 Sundstrup E, Jakobsen MD, Brandt M. et al. Strength Training Improves Fatigue Resistance and Self-Rated Health in Workers with Chronic Pain: A Randomized Controlled Trial. Biomed Res Int 2016; 2016; ID 4 137 918 0