Rofo 2017; 189(05): 413-422
DOI: 10.1055/s-0043-103280
Review
© Georg Thieme Verlag KG Stuttgart · New York

MRI Sequences in Head & Neck Radiology – State of the Art

MRI-Sequenzen in der Kopf-Hals-Radiologie – State of the Art
Gerlig Widmann
,
Benjamin Henninger
,
Christian Kremser
,
Werner Jaschke
Further Information

Publication History

10 October 2016

25 January 2017

Publication Date:
27 April 2017 (online)

Abstract

Background Magnetic resonance imaging (MRI) has become an essential imaging modality for the evaluation of head & neck pathologies. However, the diagnostic power of MRI is strongly related to the appropriate selection and interpretation of imaging protocols and sequences. The aim of this article is to review state-of-the-art sequences for the clinical routine in head & neck MRI and to describe the evidence for which medical question these sequences and techniques are useful.

Method Literature review of state-of-the-art sequences in head & neck MRI.

Results and Conclusion Basic sequences (T1w, T2w, T1wC+) and fat suppression techniques (TIRM/STIR, Dixon, Spectral Fat sat) are important tools in the diagnostic workup of inflammation, congenital lesions and tumors including staging. Additional sequences (SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR) are used for pathologies of the cranial nerves, labyrinth and evaluation of endolymphatic hydrops in Menière’s disease. Vessel and perfusion sequences (3D-TOF, TWIST/TRICKS angiography, DCE) are used in vascular contact syndromes, vascular malformations and analysis of microvascular parameters of tissue perfusion. Diffusion-weighted imaging (EPI-DWI, non-EPI-DWI, RESOLVE) is helpful in cholesteatoma imaging, estimation of malignancy, and evaluation of treatment response and posttreatment recurrence in head & neck cancer. Understanding of MRI sequences and close collaboration with referring physicians improves the diagnostic confidence of MRI in the daily routine and drives further research in this fascinating image modality.

Key Points:

  • Understanding of MRI sequences is essential for the correct and reliable interpretation of MRI findings.

  • MRI protocols have to be carefully selected based on relevant clinical information.

  • Close collaboration with referring physicians improves the output obtained from the diagnostic possibilities of MRI.

Citation Format

  • Widmann G, Henninger B, Kremser C et al. MRI Sequences in Head & Neck Radiology – State of the Art. Fortschr Röntgenstr 2017; 189: 413 – 422

Zusammenfassung

Hintergrund Magnetic resonance imaging (MRI) ist ein essentielles bildgebendes Verfahren für die Beurteilung von Kopf-Hals Erkrankungen. Die diagnostische Aussagekraft der MRI ist jedoch stark von der entsprechenden Auswahl und Interpretation der Protokolle und Sequenzen abhängig. Das Ziel dieses Beitrags ist es, State-of-the-art-Sequenzen für die klinische Routine der Kopf-Hals-MRI zusammenzufassen und die Evidenz zu beschreiben, für welche medizinische Fragestellungen diese Sequenzen nützlich sind.

Methode Literaturübersicht von State-of-the-art-Sequences in der Kopf-Hals-MRI.

Ergebnisse und Schlussfolgerung Basis-Sequenzen (T1w, T2w, T1wC+) und Fett-Suppressionstechniken (TIRM/STIR, Dixon, Spectral Fat sat) sind wichtige Bestandteile des diagnostischen Workup von Entzündungen, kongenitalen Läsionen und Tumoren inclusive Staging. Zusätzliche Sequenzen (SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR) werden verwendet für Pathologien der Hirnnerven, des Labyrinths und zur Beurteilung des endolymphatischen Hydrops bei Menière’s Erkrankung. Gefäß- und Perfusionssequenzen (3D-TOF, TWIST/TRICKS angiography, DCE) kommen bei vaskulären Kontaktsyndrom, Gefäßmalformationen und zur Analyse von mikrovaskulären Parametern der Gewebsperfusion zum Einsatz. Diffusionsgewichtete Bildgebung (EPI-DWI, non-EPI-DWI, RESOLVE) ist hilfreich beim Cholesteatom, Abschätzung von Malignität und der Beurteilung des Behandlungsansprechens und Remissionsstatus bei Kopf-Hals-Malignomen. Das Verständnis der MRI-Sequenzen und die enge Zusammenarbeit mit den zuweisenden Klinikern verbessert die diagnostische Aussagekraft der MR-Bildgebung in der täglichen Routine und ist wegweisend für die weitere Forschung in dieser faszinierenden bildgebenden Modalität.

Kernaussagen:

  • Das Verständnis von MRI-Sequenzen ist für die korrekte und verlässliche Interpretation von MRI-Befunden essentiell.

  • MRI Protokolle müssen sorgfältig anhand relevanter klinischer Informationen ausgewählt werden.

  • Die enge Zusammenarbeit mit den zuweisenden Klinikern verbessert die Ausschöpfung der diagnostischen Möglichkeiten der MR-Bildgebung.

 
  • References

  • 1 Lenz M. Greess H. Dobritz M. et al. Methods: MRT. European journal of radiology 2000; 33: 178-184
  • 2 Bender B. Widmann G. Riechelmann H. et al. Cervicalgia with increased C-reactive protein levels. Der Radiologe 2014; 54: 262-264
  • 3 Hoang JK. Branstetter BFT. Eastwood JD. et al. Multiplanar CT and MRI of collections in the retropharyngeal space: is it an abscess?. Am J Roentgenol 2011; 196: W426-W432
  • 4 Adams A. Mankad K. Offiah C. et al. Branchial cleft anomalies: a pictorial review of embryological development and spectrum of imaging findings. Insights Imaging 2016; 7: 69-76
  • 5 Lenz M. Greess H. Baum U. et al. Oropharynx, oral cavity, floor of the mouth: CT and MRI. European journal of radiology 2000; 33: 203-215
  • 6 Jeon TY. Kim HJ. Chung SK. et al. Sinonasal inverted papilloma: value of convoluted cerebriform pattern on MR imaging. AJNR Am J Neuroradiol 2008; 29: 1556-1560
  • 7 van Gils AP. van den Berg R. Falke TH. et al. MR diagnosis of paraganglioma of the head and neck: value of contrast enhancement. Am J Roentgenol 1994; 162: 147-153
  • 8 Moonis G. Cunnane MB. Emerick K. et al. Patterns of perineural tumor spread in head and neck cancer. Magn Reson Imaging Clin N Am 2012; 20: 435-446
  • 9 Eisen MD. Yousem DM. Montone KT. et al. Use of preoperative MR to predict dural, perineural, and venous sinus invasion of skull base tumors. AJNR Am J Neuroradiol 1996; 17: 1937-1945
  • 10 Ko B. Parvathaneni U. Hudgins PA. et al. Do Radiologists Report the TNM Staging in Radiology Reports for Head and Neck Cancers? A National Survey Study. AJNR Am J Neuroradiol 2016; 37: 1504-1509
  • 11 Li C. Yang W. Men Y. et al. Magnetic resonance imaging for diagnosis of mandibular involvement from head and neck cancers: a systematic review and meta-analysis. PLoS One 2014; 9: e112267
  • 12 Becker M. Zbaren P. Casselman JW. et al. Neoplastic invasion of laryngeal cartilage: reassessment of criteria for diagnosis at MR imaging. Radiology 2008; 249: 551-559
  • 13 Lell M. Baum U. Greess H. et al. Head and neck tumors: imaging recurrent tumor and post-therapeutic changes with CT and MRI. European journal of radiology 2000; 33: 239-247
  • 14 King AD. Keung CK. Yu KH. et al. T2-weighted MR imaging early after chemoradiotherapy to evaluate treatment response in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 2013; 34: 1237-1241
  • 15 Schmutzhard J. Widmann G. Abraham I. et al. Headache and hypoglossal nerve palsy. Hno 2009; 57: 690-692
  • 16 de Bondt BJ. Stokroos R. Casselman JW. et al. Clinical impact of short tau inversion recovery MRI on staging and management in patients with cervical lymph node metastases of head and neck squamous cell carcinomas. Head Neck 2009; 31: 928-937
  • 17 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28: 543-558
  • 18 Vogl T. Bisdas S. Lymph node staging. Top Magn Reson Imaging 2007; 18: 303-316
  • 19 Kimura Y. Sumi M. Sakihama N. et al. MR imaging criteria for the prediction of extranodal spread of metastatic cancer in the neck. AJNR Am J Neuroradiol 2008; 29: 1355-1359
  • 20 Sheth S. Branstetter BFT. Escott EJ. Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 2009; 29: 1045-1055
  • 21 Dubrulle F. Kohler R. Vincent C. et al. Differential diagnosis and prognosis of T1-weighted post-gadolinium intralabyrinthine hyperintensities. European radiology 2010; 20: 2628-2636
  • 22 Dubrulle F. Souillard R. Chechin D. et al. Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 2006; 238: 604-610
  • 23 Gurkov R. Pyyko I. Zou J. et al. What is Meniere's disease? A contemporary re-evaluation of endolymphatic hydrops. J Neurol 2016; 263: S71-S81
  • 24 Naganawa S. Nakashima T. Visualization of endolymphatic hydrops with MR imaging in patients with Meniere's disease and related pathologies: current status of its methods and clinical significance. Jpn J Radiol 2014; 32: 191-204
  • 25 Nakashima T. Naganawa S. Pyykko I. et al. Grading of endolymphatic hydrops using magnetic resonance imaging. Acta Otolaryngol Suppl 2009; 560: 5-8
  • 26 Sirikci A. Bayazit Y. Ozer E. et al. Magnetic resonance imaging based classification of anatomic relationship between the cochleovestibular nerve and anterior inferior cerebellar artery in patients with non-specific neuro-otologic symptoms. Surg Radiol Anat 2005; 27: 531-535
  • 27 Le Y. Kroeker R. Kipfer HD. et al. Development and evaluation of TWIST Dixon for dynamic contrast-enhanced (DCE) MRI with improved acquisition efficiency and fat suppression. J Magn Reson Imaging 2012; 36: 483-491
  • 28 Romano A. Tavanti F. Rossi Espagnet MC. et al. The role of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography (MRA) in the evaluation of head-neck vascular anomalies: a preliminary experience. Dentomaxillofac Radiol 2015; 44: 20140302
  • 29 Razek AA. Gaballa G. Megahed AS. et al. Time resolved imaging of contrast kinetics (TRICKS) MR angiography of arteriovenous malformations of head and neck. European journal of radiology 2013; 82: 1885-1891
  • 30 Higgins LJ. Koshy J. Mitchell SE. et al. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children. Clinical radiology 2016; 71: 32-39
  • 31 Yuan J. Chow SK. Yeung DK. et al. A five-colour colour-coded mapping method for DCE-MRI analysis of head and neck tumours. Clinical radiology 2012; 67: 216-223
  • 32 Bernstein JM. Homer JJ. West CM. Dynamic contrast-enhanced magnetic resonance imaging biomarkers in head and neck cancer: potential to guide treatment? A systematic review. Oral Oncol 2014; 50: 963-970
  • 33 O'Connor JP. Jackson A. Parker GJ. et al. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 2012; 9: 167-177
  • 34 Chawla S. Kim S. Loevner LA. et al. Prediction of disease-free survival in patients with squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011; 32: 778-784
  • 35 Kim S. Loevner LA. Quon H. et al. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2010; 31: 262-268
  • 36 Gaddikeri S. Gaddikeri RS. Tailor T. et al. Dynamic Contrast-Enhanced MR Imaging in Head and Neck Cancer: Techniques and Clinical Applications. AJNR Am J Neuroradiol 2016; 37: 588-595
  • 37 Gaddikeri S. Hippe DS. Anzai Y. Dynamic Contrast-Enhanced MRI in the Evaluation of Carotid Space Paraganglioma versus Schwannoma. J Neuroimaging 2016; 26: 618-625
  • 38 Hermans R. Vandecaveye V. Diffusion-weighted MRI in head and neck cancer. Cancer Imaging 2007; 7: 126-127
  • 39 Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003; 45: 169-184
  • 40 White ML. Zhang Y. Robinson RA. Evaluating tumors and tumorlike lesions of the nasal cavity, the paranasal sinuses, and the adjacent skull base with diffusion-weighted MRI. J Comput Assist Tomogr 2006; 30: 490-495
  • 41 Schwartz KM. Lane JI. Bolster Jr BD. et al The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR American journal of neuroradiology 2011; 32: 430-436
  • 42 De Foer B. Vercruysse JP. Bernaerts A. et al. Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2008; 29: 513-517
  • 43 Forbes KP. Pipe JG. Karis JP. et al. Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging. Radiology 2002; 225: 551-555
  • 44 Mas-Estelles F. Mateos-Fernandez M. Carrascosa-Bisquert B. et al. Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics 2012; 32: 1197-1213
  • 45 Thoeny HC. De Keyzer F. King AD. Diffusion-weighted MR imaging in the head and neck. Radiology 2012; 263: 19-32
  • 46 Yun TJ. Kim JH. Kim KH. et al. Head and neck squamous cell carcinoma: differentiation of histologic grade with standard- and high-b-value diffusion-weighted MRI. Head Neck 2013; 35: 626-631
  • 47 Wang J. Takashima S. Takayama F. et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 2001; 220: 621-630
  • 48 Driessen JP. Caldas-Magalhaes J. Janssen LM. et al. Diffusion-weighted MR imaging in laryngeal and hypopharyngeal carcinoma: association between apparent diffusion coefficient and histologic findings. Radiology 2014; 272: 456-463
  • 49 de Bondt RB. Hoeberigs MC. Nelemans PJ. et al. Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology 2009; 51: 183-192
  • 50 Vandecaveye V. De Keyzer F. Vander Poorten V. et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 2009; 251: 134-146
  • 51 King AD. Chow KK. Yu KH. et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266: 531-538
  • 52 King AD. Mo FK. Yu KH. et al. Squamous cell carcinoma of the head and neck: diffusion-weighted MR imaging for prediction and monitoring of treatment response. European radiology 2010; 20: 2213-2220
  • 53 Driessen JP. van Kempen PM. van der Heijden GJ. et al. Diffusion-weighted imaging in head and neck squamous cell carcinomas: a systematic review. Head Neck 2015; 37: 440-448
  • 54 Sasaki M. Yamada K. Watanabe Y. et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249: 624-630
  • 55 Payne KF. Haq J. Brown J. et al. The role of diffusion-weighted magnetic resonance imaging in the diagnosis, lymph node staging and assessment of treatment response of head and neck cancer. Int J Oral Maxillofac Surg 2015; 44: 1-7
  • 56 Kolff-Gart AS. Pouwels PJ. Noij DP. et al. Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. AJNR Am J Neuroradiol 2015; 36: 384-390
  • 57 Chen S. Ikawa F. Kurisu K. et al. Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR American journal of neuroradiology 2001; 22: 1089-1096
  • 58 Bergui M. Zhong J. Bradac GB. et al. Diffusion-weighted images of intracranial cyst-like lesions. Neuroradiology 2001; 43: 824-829
  • 59 Aikele P. Kittner T. Offergeld C. et al. Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. Am J Roentgenol 2003; 181: 261-265
  • 60 De Foer B. Vercruysse JP. Bernaerts A. et al. Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging--value in detection. Radiology 2010; 255: 866-872
  • 61 Vercruysse JP. De Foer B. Pouillon M. et al. The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. European radiology 2006; 16: 1461-1467
  • 62 Jindal M. Riskalla A. Jiang D. et al. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2011; 32: 1243-1249
  • 63 Watanabe T. Ito T. Furukawa T. et al. The efficacy of color mapped fusion images in the diagnosis and treatment of cholesteatoma using transcanal endoscopic ear surgery. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2015; 36: 763-768
  • 64 Kanoto M. Sugai Y. Hosoya T. et al. Detectability and anatomical correlation of middle ear cholesteatoma using fused thin slice non-echo planar imaging diffusion-weighted image and magnetic resonance cisternography (FTS-nEPID). Magn Reson Imaging 2015; 33: 1253-1257
  • 65 De Foer B. Vercruysse JP. Spaepen M. et al. Diffusion-weighted magnetic resonance imaging of the temporal bone. Neuroradiology 2010; 52: 785-807