Rofo 2017; 189(06): 527-536
DOI: 10.1055/s-0043-103089
Chest
© Georg Thieme Verlag KG Stuttgart · New York

Diagnosis of Pulmonary Artery Embolism: Comparison of Single-Source CT and 3rd Generation Dual-Source CT using a Dual-Energy Protocol Regarding Image Quality and Radiation Dose

Diagnostik der akuten Lungenarterienembolie: Vergleich von Single-Source CT und Dritt-Generation Dual-Source CT unter Einsatz eines Dual-Energy Protokolls – Bildqualität und Strahlenexposition
Bernhard Petritsch
,
Aleksander Kosmala
,
Tobias Gassenmaier
,
Andreas Max Weng
,
Simon Veldhoen
,
Andreas Steven Kunz
,
Thorsten Alexander Bley
Weitere Informationen

Publikationsverlauf

02. Oktober 2016

18. Januar 2017

Publikationsdatum:
26. April 2017 (online)

Abstract

Purpose To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA.

Materials and Methods 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale.

Results Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %.

Conclusion Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps.

Key Points:

  • Dual-energy CT with 90/Sn150 kV configuration allows for significant dose reduction in pulmonary CTA.

  • Subjective image quality was similar among the three evaluated CT-protocols (64-slice SSCT, single-energy DSCT, 90/Sn150 kV DECT) and was rated good to excellent in 75% of cases.

  • Dual-energy CT provides potential additional information by means of iodine distribution maps.

Citation Format

  • Petritsch B, Kosmala A, Gassenmaier T et al. Diagnosis of Pulmonary Artery Embolism: Comparison of Single-Source CT and 3rd Generation Dual-Source CT using a Dual-Energy Protocol Regarding Image Quality and Radiation Dose. Fortschr Röntgenstr 2017; 189: 527 – 536

Zusammenfassung

Ziel Das Potential der Dritt-Generation Dual-Source CT (DSCT) in der Lungenemboliediagnostik wurde bis dato noch nicht ausführlich untersucht. Ziel dieser Studie war es, Strahlendosisparameter sowie subjektive und objektive Bildqualität des aktuellsten DSCT Scanners im Single-Energy und Dual-Energy (DE) Modus mit einem herkömmlichen pulmonalen Standard CTA Protokoll am 64-Zeilen CT (SSCT) zu vergleichen.

Material und Methoden Es wurden insgesamt 180 pulmonale CTA Studien in drei Patientengruppen mit jeweils 60 Patienten durchgeführt. 1. Gruppe: konventionelle 120 kV (ref.) 64-Zeilen SSCT; 2. Gruppe: 100 kV (ref.) Single-Energy DSCT; 3. Gruppe: 90/Sn150 kV DECT. Dosisparameter (CTDIvol, DLP, effektive Dosis) wurden evaluiert und die CT Abschwächung (HU) wurde an jeweils drei zentralen bzw. peripheren Lokalisationen gemessen. Das Signal-Rausch-Verhältnis (SNR) und das Kontrast-Rausch-Verhältnis (CNR) wurden berechnet. Die subjektive Bildqualität wurde von zwei Readern ausgewertet (5-Punkte Skala).

Ergebnisse CTDIvol und DLP waren in der DECT Gruppe jeweils signifikant niedriger als in der SSCT Gruppe (p < 0,001 [CTDIvol]; p < 0,001 [DLP]) und der DSCT Gruppe (p = 0,003 [CTDIvol]; p = 0,003 [DLP]). Die effektive Dosis war mit 2,79 ± 0,95 mSv in der DECT Gruppe signifikant geringer als in der SSCT Gruppe (4,60 ± 1,68 mSv, p < 0,001) und der DSCT Gruppe (4,24 ± 2,69 mSv, p = 0,003). SNR und CNR waren in der DSCT Gruppe signifikant höher (p < 0,001). Die subjektive Bildqualität der drei Protokolle war vergleichbar und wurde in 75 % der Fälle (135/180) als gut bzw. sehr gut bewertet mit einer Interobserver-Variabilität von 80 %.

Schlussfolgerung Die Verwendung von Dual-Energy Protokollen in der pulmonalen CTA an Dritt-Generation Dual-Source CT Scannern erlaubt eine signifikante Dosisreduktion bei erhaltener exzellenter Bildqualität und potentieller zusätzlicher Information im Sinne von Perfusions-Karten.

Kernaussagen:

  • Die Verwendung von 90/Sn150 kV Dual-Energy CT-Protokollen erlaubt eine signifikante Dosisreduktion in der pulmonalen CTA.

  • Die subjektive Bildqualität aller drei untersuchten CT-Protokolle (64-Zeilen SSCT, Single-Energy DSCT, 90/Sn150 kV DECT) war vergleichbar und wurde in 75 % der Fälle als gut bzw. sehr gut bewertet.

  • Die Dual-Energy CT bietet potentiell zusätzliche Informationen durch die Erstellung von farbcodierten Jod-Karten.

 
  • References

  • 1 Tapson VF. Acute pulmonary embolism. N Engl J Med 2008; 358: 1037-1052
  • 2 Dauphine C. Omari B. Pulmonary embolectomy for acute massive pulmonary embolism. Ann Thorac Surg 2005; 79: 1240-1244
  • 3 Ota M. Nakamura M. Yamada N. et al. Prognostic significance of early diagnosis in acute pulmonary thromboembolism with circulatory failure. Hear Vessel 2002; 17: 7-11
  • 4 Stein PD. Woodard PK. Weg JG. et al. Diagnostic Pathways in Acute Pulmonary Embolism: Recommendations of The PIOPED II Investigators. Am J Med 2006; 119: 1048-1055
  • 5 Torbicki A. Perrier A. Konstantinides S. et al. Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2008; 29: 2276-2315
  • 6 Remy-Jardin M. Pistolesi M. Goodman LR. et al. Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 2007; 245: 315-329
  • 7 Schaefer-Prokop C. Prokop M. CTPA for the diagnosis of acute pulmonary embolism during pregnancy. Eur Radiol 2008; 18: 2705-2708
  • 8 Stein PD. Fowler SE. Goodman LR. et al. Multidetector Computed Tomography for Acute Pulmonary Embolism (PIOPEDII). N Engl J Med 2006; 354: 2317-2327
  • 9 Johnson TRC. Dual-energy CT: general principles. Am J Roentgenol 2012; 199: 3-8
  • 10 Johnson TRC. Krauss B. Sedlmair M. et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17: 1510-1517
  • 11 Fink C. Johnson TR. Michaely HJ. et al. Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Rofo 2008; 180: 879-883
  • 12 Thieme SF. Johnson TRC. Lee C. et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. Am J Roentgenol 2009; 193: 144-149
  • 13 Pontana F. Faivre JB. Remy-Jardin M. et al. Lung Perfusion with Dual-energy Multidetector-row CT (MDCT). Feasibility for the Evaluation of Acute Pulmonary Embolism in 117 Consecutive Patients. Acad Radiol 2008; 15: 1494-1504
  • 14 Bauer RW. Kerl JM. Weber E. et al. Lung perfusion analysis with dual energy CT in patients with suspected pulmonary embolism--influence of window settings on the diagnosis of underlying pathologies of perfusion defects. Eur J Radiol 2011; 80: 476-482
  • 15 Ferda J. Ferdova E. Mirka H. et al. Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution. Eur J Radiol 2011; 77: 287-293
  • 16 Bauer RW. Kramer S. Renker M. et al. Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 2011; 21: 2139-2147
  • 17 De Zordo T. Von Lutterotti K. Dejaco C. et al. Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: High-pitch dual source CT, dual energy CT and conventional spiral CT. Eur Radiol 2012; 22: 279-286
  • 18 Sabel BO. Buric K. Karara N. et al. High-Pitch CT Pulmonary Angiography in Third Generation Dual-Source CT: Image Quality in an Unselected Patient Population. PLoS One 2016; 11 DOI: 10.1371/journal.pone.0146949.
  • 19 Schenzle JC. Sommer WH. Neumaier K. et al. Dual energy CT of the chest: how about the dose?. Invest Radiol 2010; 45: 347-353
  • 20 Hoey ETD. Gopalan D. Ganesh V. et al. Dual-energy CT pulmonary angiography: a novel technique for assessing acute and chronic pulmonary thromboembolism. Clin Radiol 2009; 64: 414-419
  • 21 Kristiansson M. Holmquist F. Nyman U. Ultralow contrast medium doses at CT to diagnose pulmonary embolism in patients with moderate to severe renal impairment: A feasibility study. Eur Radiol 2010; 20: 1321-1330
  • 22 New PF. Aronow S. Attenuation measurements of whole blood and blood fractions in computed tomography. Radiology 1976; 121: 635-640
  • 23 Norman D. Price D. Boyd D. et al. Quantitative aspects of computed tomography of the blood and cerebrospinal fluid. Radiology 1977; 123: 335-338
  • 24 Schoepf UJ. Goldhaber SZ. Costello P. Spiral computed tomography for acute pulmonary embolism. Circulation 2004; 109: 2160-2167
  • 25 Patel S. Kazerooni EA. Cascade PN. Pulmonary embolism: optimization of small pulmonary artery visualization at multi-detector row CT. Radiology 2003; 227: 455-460
  • 26 Brunot S. Corneloup O. Latrabe V. et al. Reproducibility of multi-detector spiral computed tomography in detection of sub-segmental acute pulmonary embolism. Eur Radiol 2005; 15: 2057-2063
  • 27 Schertler T. Scheffel H. Frauenfelder T. et al. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality. Eur Radiol 2007; 17: 3179-3188
  • 28 Thieme SF. Becker CR. Hacker M. et al. Dual energy CT for the assessment of lung perfusion--correlation to scintigraphy. Eur J Radiol 2008; 68: 369-374
  • 29 Dournes G. Verdier D. Montaudon M. et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol 2014; 24: 42-51
  • 30 Henzler T. Fink C. Schoenberg SO. et al. Dual-energy CT: radiation dose aspects. Am J Roentgenol 2012; 199: 16-25
  • 31 Heyer CM. Mohr PS. Lemburg SP. et al. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 2007; 245: 577-583
  • 32 Schuster ME. Fishman JE. Copeland JF. et al. Pulmonary embolism in pregnant patients: a survey of practices and policies for CT pulmonary angiography. Am J Roentgenol 2003; 181: 1495-1498
  • 33 Huda W. Scalzetti EM. Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 2000; 217: 430-435
  • 34 Kerl JM. Bauer RW. Maurer TB. et al. Dose levels at coronary CT angiography--a comparison of Dual Energy-, Dual Source- and 16-slice CT. Eur. Radiol 2011; 21: 530-537