OP-Journal 2017; 33(01): 56-62
DOI: 10.1055/s-0043-102955
Fachwissen
Georg Thieme Verlag KG Stuttgart · New York

Knochenzemente für die Behandlung osteoporotischer Frakturen

Bone Cement for Fracture Fixation in Osteoporotic Bone
Ladina Hofmann-Fliri
,
Markus Windolf
Further Information

Publication History

Publication Date:
23 June 2017 (online)

Zusammenfassung

Die Versorgung osteoporotischer Frakturen mittels metallischer Implantate erreicht zunehmend ihre Grenzen. Eine mögliche Lösung, um eine ausreichende Verankerung des Implantats sicherzustellen, ist die Verstärkung der geschwächten Knochenstruktur mit Knochenzement, die sog. Implantataugmentation. Hierfür kommen meist Acrylate (PMMA) oder resorbierbare Kalziumphosphatzemente (CaP) zum Einsatz. PMMA-Zemente besitzen ausgewogene mechanische Eigenschaften, sind einfach zu handhaben und lassen sich gut und sicher injizieren. Allerdings geht die Aushärtung von PMMA mit Entstehung von Wärme einher. Es konnte aber gezeigt werden, dass die für die Implantataugmentation benötigten kleinen Mengen an PMMA nicht zu kritischen Temperaturen im umliegenden Gewebe führen. CaP-Zemente besitzen eine sehr gute Biokompatibilität, erwärmen sich bei der Aushärtung nicht und sind resorbierbar. Wegen der verminderten mechanischen Eigenschaften wird jedoch oft geraten, die derzeit verfügbaren CaP-Zemente eher an nicht oder wenig belasteten Stellen anzuwenden. Neuere Entwicklungen deuten jedoch darauf hin, dass in Zukunft deutlich bessere Eigenschaften von CaP-Zementen zu erwarten sind. Mit der kurz- bis mittelfristig klaren Zunahme von Altersfrakturen bildet die Implantataugmentation mit CaP oder Acrylat eine interessante Möglichkeit, um den kommenden Problemen zu begegnen.

Abstract

Fixation of osteoporotic fractures using metallic implants is reaching its limits. A possible solution to assure proper implant anchorage is to strengthen the compromised bone stock with bone cement, also called implant augmentation. For this purpose, acrylic cements (PMMA) or resorbable calcium phosphate (CaP) cements can be used. PMMA cements show good mechanical properties, are easy to handle and demonstrate good and safe injectability. The hardening of PMMA, however, is accompanied by the production of heat. It has been shown though, that the small amounts of PMMA needed for implant augmentation do not lead to critical temperatures in the surrounding tissues. CaP cements demonstrate very good biocompatibility, do not heat up during hardening and are resorbable. Due to their inferior mechanical properties, it is, however, often recommended to use the currently available CaP cements rather in non- or low weight-bearing situations. New developments show evidence, however, that future CaP cements will have considerably better properties. Implant augmentation with CaP or acrylic bone cement offers an interesting option to face the future problems that will arise with the expected short- to mid-term increase in fragility fractures.

 
  • Literatur

  • 1 Nordin BE. Osteoporosis With Particular Reference to the Menopause. In: Avioli LV. ed. The Osteoporotic Syndrome: Detection, Prevention and Treatment. New York: Grune and Stratton; 1983: 13-43
  • 2 Hadji P, Klein S, Gothe H. et al. The epidemiology of osteoporosis – Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110: 52-57
  • 3 Bartl R. Osteoporose. Prävention – Diagnostik – Therapie. Stuttgart: Thieme; 2010
  • 4 Court-Brown CM, Caesar B. Epidemiology of adult fractures: A’review. Injury 2006; 37: 691-697
  • 5 Diepgen TL. [Demographic development of the population]. J Dtsch Dermatol Ges 2005; 3 (Suppl. 02) S36-S39
  • 6 Davis TR, Sher JL, Horsman A. et al. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 1990; 72: 26-31
  • 7 Brunner F, Sommer C, Bahrs C. et al. Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: a prospective multicenter analysis. J Orthop Trauma 2009; 23: 163-172
  • 8 Roderer G, Erhardt J, Graf M. et al. Clinical results for minimally invasive locked plating of proximal humerus fractures. J Orthop Trauma 2010; 24: 400-406
  • 9 Solberg BD, Moon CN, Franco DP. et al. Locked plating of 3- and 4-part proximal humerus fractures in older patients: the effect of initial fracture pattern on outcome. J Orthop Trauma 2009; 23: 113-119
  • 10 Sudkamp N, Bayer J, Hepp P. et al. Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter, observational study. J Bone Joint Surg Am 2009; 91: 1320-1328
  • 11 Voigt C, Woltmann A, Partenheimer A. et al. [Management of complications after angularly stable locking proximal humerus plate fixation]. Chirurg 2007; 78: 40-46
  • 12 Palmer SJ, Parker MJ, Hollingworth W. The cost and implications of reoperation after surgery for fracture of the hip. J Bone Joint Surg Br 2000; 82: 864-866
  • 13 Bartucci EJ, Gonzalez MH, Cooperman DR. et al. The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 1985; 67: 1094-1107
  • 14 Charnley J. Arthroplasty of the hip. A new operation. Lancet 1961; 1: 1129-1132
  • 15 Charnley J. A biomechanical analysis of the use of cement to anchor the femoral head prosthesis. J Bone Joint Surg Br 1965; 47: 354-363
  • 16 Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma 2002; 16: 311-316
  • 17 Baroud G, Bohner M, Heini P. et al. Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 2004; 14: 487-504
  • 18 Elder S, Frankenburg E, Goulet J. et al. Biomechanical evaluation of calcium phosphate cement-augmented fixation of unstable intertrochanteric fractures. J Orthop Trauma 2000; 14: 386-393
  • 19 Ignatius AA, Augat P, Ohnmacht M. et al. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J Biomed Mater Res 2001; 58: 254-260
  • 20 LeGeros RZ, Chohayeb A, Schulmann A. Apatitic calcium phosphates: Possible restorative materials. J Dent Res 1982; 61 (Spec Issue): Abstr. No. 1482, 343
  • 21 Brown WE, Chow LC. A New Calcium Phosphate, Water-Setting Cement. In: Brown PW. ed. Cements Research Progress 1986. Westerville, OH: American Ceramic Society; 1987: 352-379
  • 22 Chow LC, Markovic M, Takagi S. Calcium Phosphate Cements. In: Struble LJ. ed. Cements Research Progress 1997. Westerville, OH: American Ceramic Society; 1998: 215-238
  • 23 Bohner M, Lemaître J, Cordey J. et al. Potential use of biodegradable bone cement in bone surgery: holding strength of screws in reinforced osteoporotic bone. Orthopadic Trans 1992; 16: 401-402
  • 24 Goodman SB, Bauer TW, Carter D. et al. Norian SRS cement augmentation in hip fracture treatment. Laboratory and initial clinical results. Clin Orthop Relat Res 1998; 348: 42-50
  • 25 Moore DC, Frankenburg EP, Goulet JA. et al. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis. J Orthop Trauma 1997; 11: 577-583
  • 26 von der Linden P, Gisep A, Boner V. et al. Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 2006; 24: 2230-2237
  • 27 Sermon A, Boner V, Boger A. et al. Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability – a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 2012; 72: E54-E59
  • 28 Erhart S, Schmoelz W, Blauth M. et al. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail Antirotation . Injury 2011; 42: 1322-1327
  • 29 Fensky F, Nüchtern JV, Kolb JP. et al. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures – a biomechanical cadaver study. Injury 2013; 44: 802-807
  • 30 Sermon A, Boner V, Schwieger K. et al. Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech (Bristol, Avon) 2012; 27: 71-76
  • 31 Kammerlander C, Doshi H, Gebhard F. et al. Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 2014; 134: 343-349
  • 32 Kammerlander C, Gebhard F, Meier C. et al. Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial. Injury 2011; 42: 1484-1490
  • 33 Goetzen M, Nicolino T, Hofmann-Fliri L. et al. Metaphyseal screw augmentation of the LISS-PLT plate with polymethylmethacrylate improves angular stability in osteoporotic proximal third tibial fractures: a biomechanical study in human cadaveric tibiae. J Orthop Trauma 2014; 28: 294-299
  • 34 Grüneweller N, Raschke MJ, Zderic I. et al. Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a new hemi-pelvis test model. J Orthop Res 2016; DOI: 10.1002/jor.23401.
  • 35 Kathrein S, Kralinger F, Blauth M. et al. Biomechanical comparison of an angular stable plate with augmented and non-augmented screws in a newly developed shoulder test bench. Clin Biomech (Bristol, Avon) 2013; 28: 273-277
  • 36 Klos K, Wahnert D, Gueorguiev B. et al. Development of a technique for cement augmentation of nailed tibiotalocalcaneal arthrodesis constructs. Clin Biomech (Bristol, Avon) 2010; 25: 576-581
  • 37 Rausch S, Klos K, Wolf U. et al. A biomechanical comparison of fixed angle locking compression plate osteosynthesis and cement augmented screw osteosynthesis in the management of intra articular calcaneal fractures. Int Orthop 2014; 38: 1705-1710
  • 38 Roderer G, Scola A, Schmolz W. et al. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 2013; 44: 1327-1332
  • 39 Wahnert D, Hofmann-Fliri L, Richards RG. et al. Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 2014; 93: e166
  • 40 Hofmann-Fliri L, Nicolino TI, Barla J. et al. Cement augmentation of implants–no general cure in osteoporotic fracture treatment. A biomechanical study on non-displaced femoral neck fractures. J Orthop Res 2016; 34: 314-319
  • 41 Juvonen T, Koistinen A, Kroger H. et al. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model. J Appl Biomater Funct Mater 2012; 10: 113-118
  • 42 Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials 1998; 19: 2357-2366
  • 43 Ignatius AA, Betz O, Augat P. et al. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes. J Biomed Mater Res 2001; 58: 701-709
  • 44 Collinge C, Merk B, Lautenschlager EP. Mechanical evaluation of fracture fixation augmented with tricalcium phosphate bone cement in a porous osteoporotic cancellous bone model. J Orthop Trauma 2007; 21: 124-128
  • 45 Gisep A, Kugler S, Wahl D. et al. Mechanical characterisation of a bone defect model filled with ceramic cements. J Mater Sci Mater Med 2004; 15: 1065-1071
  • 46 Bouville F, Maire E, Meille S. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 2014; 13: 508-514
  • 47 Juvonen T, Nuutinen JP, Koistinen AP. et al. Biomechanical evaluation of bone screw fixation with a novel bone cement. Biomed Eng Online 2015; 14: 74
  • 48 Munch E, Launey ME, Alsem DH. et al. Tough, bio-inspired hybrid materials. Science 2008; 322: 1516-1520
  • 49 Habraken W, Habibovic P, Epple M. et al. Calcium phosphates in biomedical applications: materials for the future?. Materials Today 2016; 19: 69-87
  • 50 Blazejak M, Hofmann-Fliri L, Buchler L. et al. In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury 2013; 44: 1321-1326
  • 51 Boner V, Kuhn P, Mendel T. et al. Temperature evaluation during PMMA screw augmentation in osteoporotic bone – an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 2009; 90: 842-848
  • 52 Fliri L, Lenz M, Boger A. et al. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 2012; 72: 1098-1101
  • 53 Epple M. Biomaterialien und Biomineralisation. Eine Einführung für Naturwissenschafter, Mediziner und Ingenieure. Wiesbaden: B. G. Teubner; 2003
  • 54 Goetzen M, Hofmann-Fliri L, Arens D. et al. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine (Baltimore) 2015; 94: e414
  • 55 Kilian O, Wenisch S, Karnati S. et al. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite. Biomaterials 2008; 29: 3429-3437
  • 56 Malard O, Bouler JM, Guicheux J. et al. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 1999; 46: 103-111
  • 57 Miyamoto Y, Ishikawa K, Takechi M. et al. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res 1999; 48: 36-42
  • 58 Sheikh Z, Abdallah M-N, Hanafi AA. et al. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials 2015; 8: 7913-7925
  • 59 Boger A, Wheeler K. A medium viscous acrylic cement enhances uniformity of cement filling and reduces leakage in cacellous bone augmentation. ISRN Mater Sci 2011; 2011: (780510)
  • 60 Boger A, Wheeler KD, Schenk B. et al. Clinical investigations of polymethylmethacrylate cement viscosity during vertebroplasty and related in vitro measurements. Eur Spine J 2009; 18: 1272-1278
  • 61 Bohner M, Gasser B, Baroud G. et al. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials 2003; 24: 2721-2730
  • 62 Gisep A, Boger A. Injection biomechanics of in vitro simulated vertebroplasty – correlation of injection force and cement viscosity. Biomed Mater Eng 2009; 19: 415-420
  • 63 Deusser S, Sattig C, Boger A. Rheological and curing behavior of a newly developed, medium viscous acrylic bone cement. ISRN Mater Sci 2011; 2011: (571728)
  • 64 Zderic I, Steinmetz P, Benneker LM. et al. Bone cement allocation analysis in artificial cancellous bone structures. J Orthop Translation 2017; 8: 40-48
  • 65 Boger A, Wheeler K, Montali A. et al. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. J Biomed Mater Res B Appl Biomater 2009; 90: 760-766
  • 66 Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials 2005; 26: 1553-1563
  • 67 Zhang J, Liu W, Schnitzler V. et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 2014; 10: 1035-1049
  • 68 Blankstein M, Widmer D, Gotzen M. et al. Assessment of intraosseous femoral head pressures during cement augmentation of the perforated proximal femur nail antirotation blade. J Orthop Trauma 2014; 28: 398-402